Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n-2+5⋮n-2\\ \Rightarrow n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-3;1;3;7\right\}\\ b,\Rightarrow2\left(n-4\right)+13⋮n-4\\ \Rightarrow n-4\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\\ \Rightarrow n\in\left\{-9;3;5;17\right\}\\ c,\Rightarrow6n-9⋮3n+1\\ \Rightarrow2\left(3n+1\right)-12⋮3n+1\\ \Rightarrow3n+1\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\\ \Rightarrow n\in\left\{-1;0;1\right\}\left(n\in Z\right)\\ d,\Rightarrow n^2+2n-n-2+3⋮n+2\\ \Rightarrow n\left(n+2\right)-\left(n+2\right)+3⋮n+2\\ \Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
a: \(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
https://loga.vn/hoi-dap/tim-so-tu-nhien-n-sao-cho-n-6-chia-het-cho-n-2-36137
https://h7.net/hoi-dap/toan-6/tim-so-tu-nhien-n-de-3n-7-chia-het-cho-n-faq26687.html
n(2n-3)-2n(n+2)
=2n2-3n-2n2-4n
= - 7n luôn chia hết cho 7 (vì -7 chia hết cho 7)
vậy n(2n-3)-2n(n+2) luôn chia hết cho 7 với mọi n
tham khảo ở link bn nhé
\(5^{x+1}+5^{x-1}=130\)
\(5^x\cdot5^1+5^x\div5^1=130\)
\(5^x\cdot5^1+5^x\cdot\dfrac{1}{5}=130\)
\(5^x\cdot\left(5+\dfrac{1}{5}\right)=130\)
\(5^x\cdot\dfrac{26}{5}=130\)
\(5^x=130\div\dfrac{26}{5}\)
\(5^x=130\cdot\dfrac{5}{26}\)
\(5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Mọi người còn câu trả lời nào khác không cứ trả lời đi mik tick cho
\(D=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(D=\frac{1}{90}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
D=1/90 - 1/72 -1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
D=1/90-(1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2)
D=1/90-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72)
D=1/90-(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
D=1/90-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9)
D=1/90-(1/1-1/9)
D=1/90-8/9
D=(-79/90)
Để (2n+6) \(⋮\)(3n+1) thì 3.(2n+6) \(⋮\)(3n+1)
(6n+18) \(⋮\)(3n+1)
2.(3n+1) + 16 \(⋮\)(3n+1)
mà 2.(3n+1) + 16 \(⋮\)(3n+1)
nên để 2.(3n+1) + 16 \(⋮\)(3n+1) thì 16 \(⋮\)(3n+1)
\(\Rightarrow\)3n+1\(\in\)Ư(6) = {1;2;3;6}
\(\Rightarrow\)3n\(\in\){0;1;2;5} mà 3n\(⋮\)3
\(\Rightarrow\)3n = 0
\(\Rightarrow\)n = 0
Vậy để (2n+6) \(⋮\)(3n+1) thì n=0
Để (2n+6) ...(3n+1) thì 3.(2n+6)...(3n+1)
(6n+18)...(3n+1)
2.(3n+1)+16...(3n+1)
mà 2.(3n+1)+16...(3n+1)
nên để 2. (3n+1)+16...(3n+1) thì 16...(3n+1)
Vậy để (2n+6)...(3n+1) thì n=0