Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(4.2^5:\left(2^3.\dfrac{1}{16}\right)\)
\(=4.2^5:\dfrac{2^3}{16}\)
\(=2^2.2^5:\dfrac{2^3}{2^4}\)
\(=2^7:\dfrac{1}{2}\)
\(=2^6=64\)
Vậy ...
b) \(\dfrac{8^5.10^4.25^3}{16^4.625^3}\)
\(=\dfrac{2^{15}.2^4.5^4.5^6}{2^8.5^{12}}\)
\(=\dfrac{2^{19}.5^{10}}{2^8.5^{12}}\)
\(=\dfrac{2^{11}}{5^2}\)
Vậy ...
c) \(C=2^{200}-2^{199}+2^{198}-2^{197}+...+2^2-2\)
\(\Leftrightarrow C=\left(2^{200}-2^{199}\right)+\left(2^{198}-2^{197}\right)+...+\left(2^2-2\right)\)
\(\Leftrightarrow C=2^{199}\left(2-1\right)+2^{197}\left(2-1\right)+...+2\left(2-1\right)\)
\(\Leftrightarrow C=2^{199}+2^{197}+...+2\)
\(\Leftrightarrow4C=2^{201}+2^{199}+...+2^3\)
\(\Leftrightarrow3C=4C-C=2^{201}-2\)
\(\Leftrightarrow C=\dfrac{2^{201}-2}{3}\)
Vậy ...
Lời giải:
$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$
$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$
$\Rightarrow 5^2A-A=5^{202}-1$
$\Rightarrow 24A=5^{202}-1$
$\Rightarrow A=\frac{5^{202}-1}{24}$
Lơ giải:
$A=1+5^2+5^4+5^6+...+5^{198}+5^{200}$
$5^2A=5^2+5^4+5^6+5^8+...+5^{200}+5^{202}$
$\Rightarrow 5^2A-A=5^{202}-1$
$\Rightarrow 24A=5^{202}-1$
$\Rightarrow A=\frac{5^{202}-1}{24}$
55
=2x{198-158+100}
=2x140
=280