K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-x^3-3x^2-3x-1+3x^2-3\)

\(=-3x-11\)

17 tháng 7 2016

 1. Chia (x^3-2) cho x-1 ta được x^2+x+1 dư -1

Vậy để x^3-2 chia hết cho x-1 thì x-1\(\in\)Ư(-1)

Mà Ư(-1)={1;-1}

=> x-1\(\in\){1;-1}

*) x-1 = 1<=> x=2

*) x-1 =-1 <=> x=0

 Vậy x=2;x=0 thì x^3-2 chia hết cho x-1

17 tháng 7 2016

2, Chia cột dọc x^3-a cho x-1 ta được x^2+x+1 dư 1-a

Vậy để x^3-a chia hết cho x-1 thì 1-a=0 <=> a = 1

Vậy a=1 thì x^3 - a chia hết cho x-1

18 tháng 10 2019

a) \(3x^2-2x=0\)

Phương trình này xác định với mọi x

b)\(\frac{1}{x-1}=3\)

pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)

d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)

e) \(2x=\frac{1}{x^2-2x+1}\)

pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)

\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)

\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

 
 
13 tháng 7 2019

3, 2x(x^2-8x+16)-(x+5)(x^2-4)+2(x^2+10x+25)-x+1

=2x^3-16x^2+32x-(x^3-4x+5x^2-20)+2x^2+20x+50-x+1

=2x^3-16x^2+32x-x^3+4x-5x^2+20+2x^2+20x+50-x+1

=x^3-19x^2+55x+71

13 tháng 6 2018

A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y

   = - xy

  = \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)

  = \(\frac{1}{2}\)

mk đang bận mấy câu kia tương tự nha