K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

22 tháng 6 2017

Đặt : \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(A-\frac{2}{1\cdot3}=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(2A-\frac{2}{1\cdot3}=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-...+\frac{2}{99}-\frac{2}{101}\)

\(2A-\frac{2}{3}=\frac{2}{3}-\frac{2}{101}\)

\(2A-\frac{2}{3}=\frac{196}{303}\)

\(A-\frac{2}{3}=\frac{98}{303}\)

\(A=\frac{98}{303}+\frac{2}{3}=\frac{100}{101}\)

3 tháng 2 2016

A = 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101

A = 2/1 - 2/101 = 200/101

Kết quả là 200/101 bạn nhé

3 tháng 2 2016

2/2 + 1x3 / 3x5 + 2/2 + ······ + 5x7 / 97x99 + 2 / 99x101 
= 1-1 / 3 + ​​1 / 3-1 / 5 + 1 / 5-1 / 7 + ... ... + 1 / 97-1 / 99 + 1 / 99-1 / 101 
= 1-1 / 101 
= 100/101

23 tháng 2 2017

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)

\(=2\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right):2\)

\(=\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right):2\)

\(=\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\right):2\)

\(=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)

\(=\left(\frac{1}{1}-\frac{1}{101}\right):2\)

\(=\frac{100}{101}:2=\frac{50}{101}\).

24 tháng 2 2017

100/101

8 tháng 8 2023

`2/(1xx3)+2/(3xx5)+2/(5xx7)+...+2/(99xx101)` đề phải ntn chứ mà nhỉ

`=1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101`

`=1/1-1/101`

`=101/101-1/101`

`=100/101`

8 tháng 8 2023

(Sửa phần 3 / 3 x 5 = 2 / 3 x 5)

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\)

Ta có: \(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)

\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=2\times\left(1-\dfrac{1}{101}\right)\)

\(=2\times\dfrac{100}{101}\)

\(=\dfrac{200}{101}\)

 

25 tháng 7 2017

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(\Leftrightarrow A=\frac{3}{2}.\frac{100}{101}\)

\(\Leftrightarrow A=\frac{150}{101}\)

26 tháng 7 2017

A=3/1x3+3/3x5+3/5x7+.....+3/99x101

A=3x(1/1x3+1/3x5+1/5x7+.....+1/99x101)

A=3/2x(2/1x3+2/3x5+2/5x7+.....+2/99x101)

A=3/2x(1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

A=3/2x(1/1-1/101)

A=3/2x(101/101-1/101)

A=3/2x100/101

A=150/101.

Vậy A=150/101

6 tháng 6 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{49.50}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{5}-\frac{1}{50}=\frac{9}{50}\)

b, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

6 tháng 6 2019

\(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{49\times50}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{5}-\frac{1}{50}=\frac{9}{50}\)

~ Hok tốt ~