K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2015

x+y=1/2 :y+z=1/3 vay x-z=1/6

                                 z+x=1/4 vay2x=5/12 suy ra x=5/24 vay y=1/2-5/24=7/24

                                                                                    z=1/3-7/24=1/24

11 tháng 6 2016

Từ đầu bài suy ra:

\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow x+y+y+z+z+x=\frac{13}{12}\)

\(\Leftrightarrow2x+2y+2z=\frac{13}{12}\)

\(\Leftrightarrow2\left(x+y+z\right)=\frac{13}{12}\)

\(\Rightarrow x+y+z=\frac{13}{12}:2=\frac{13}{24}\)

\(\Rightarrow x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)

\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

Vậy...

x+y=1/2;y+z=1/3;z+x=1/4

=>2.(x+y+z)=1/2+1/3+1/4=13/12

x+y=1/2=>z=13/12-1/2=7/12

y+z=1/3=>x=13/12-1/3=3/4

z+x=1/4=>y=13/12-1/4=5/6

Ta có :

\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Rightarrow2x+2y+2z=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)

\(\Rightarrow2\left(x+y+z\right)=1\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}\Rightarrow z=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}\Rightarrow x=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}\Rightarrow y=\frac{1}{3}\end{cases}}\)

Vậy \(x=\frac{1}{6},y=\frac{1}{3};z=0\) .

30 tháng 9 2020

\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)

Ta có:\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Leftrightarrow2\left(x+y+z\right)=1\)

\(\Leftrightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\end{cases}}\)

Vậy....

21 tháng 7 2017

vi (x+1)^2>= 0

(y-1)^4>=0

z^2>=0

=>(x+1)^2+(y-1)^4+z^2>=0

Để (x+1)^2+(y-1)^4+z^2=0

=>(x+1)^2=0 =>x+1=0 => x=-1

(y-1)^4=0 =>y-1=0 => y=1

z^2=0 => z=2