
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)
\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)
\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)
Cộng các vế , ta được :
\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)
hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)



+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)
\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'
\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)
+) \(6=3\sqrt[3]{xyz}\le x+y+z\)
+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)
Dấu = xảy ra khi x = y = z = 2
Cho x,y,z>0 và \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\ge2\)
Chứng minh: xyz≤\(\dfrac{1}{8}\)

Ta có \(\dfrac{1}{1+x}\ge1-\dfrac{1}{1+y}+1-\dfrac{1}{1+x}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\)
\(\ge2\sqrt{\dfrac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Chứng minh tương tự, ta có
\(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(z+1\right)\left(x+1\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(x+1\right)\left(y+1\right)}}\)
Nhân cả 3 cua 3 BĐT cùng chiều, ta có
\(\dfrac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\dfrac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Rightarrow xuz\le\dfrac{1}{8}\left(ĐPCM\right)\)
mình sửa và bổ sung ở phép cuối là xyz≤\(\dfrac{1}{8}\).bất đẳng thức xảy ra⇔x=y=z=\(\dfrac{1}{2}\)