Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Bài 2:
\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow4^x=8.2^{x+y}\Leftrightarrow\left(2^2\right)^x=2^3.2^{x+y}\Leftrightarrow2^{2x}=2^{x+y+3}\)<=>2x=x+y+3<=>x=y+3
\(\frac{9^{x+y}}{3^{5y}}=243\Leftrightarrow9^{x+y}=243.3^{5y}\Leftrightarrow\left(3^2\right)^{x+y}=3^5.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\)<=>2x+2y=5y+5
<=>2x=3y+5 mà x=y+3 => 2(y+3)=3y+5 <=> 2y+6=3y+5 <=> 6-5=3y-2y <=> y=1 <=> x=1+3=4
Vậy xy=4.1=4
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
2^x= 4^(y-1)
<=> 1^x = 2^(y-1)
<=> 1=2(y-1) Để 2^(y-1) bằng 1 thì 2^(y-1) phải là bậc 0 nên y=1, cho dù x là số nào đi chăng nữa thì đề vẫn thoả mãn
27^y= 3^(x+8)
<=> 9^y = 1^(x+8)
<=> 9^y = 1. Để 9^y bằng 1 thì 9^y phải là bậc 0 nên y=0, còn x là số nào đi nữa thì đề vẫn thoả mãn
Vậy đề này theo mình là tìm y chứ không phải tìm x đâu bạn2^x= 4^(y-1)
<=> 1^x = 2^(y-1)
<=> 1=2(y-1) Để 2^(y-1) bằng 1 thì 2^(y-1) phải là bậc 0 nên y=1, cho dù x là số nào đi chăng nữa thì đề vẫn thoả mãn
27^y= 3^(x+8)
<=> 9^y = 1^(x+8)
<=> 9^y = 1. Để 9^y bằng 1 thì 9^y phải là bậc 0 nên y=0, còn x là số nào đi nữa thì đề vẫn thoả mãn
Vậy đề này theo mình là tìm y chứ không phải tìm x đâu bạn
\(2^x=8^{y+1}< =>2^x=2^{3\left(y+1\right)}=>x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}< =>3^{2y}=3^{x-9}=>2y=x-9\) (2)
(1)&(2) => x=3y+3 và x=2y+9
trừ 2 vế, => 3y+3-2y-9=0 => y=6
và x=21
Trả lời:
\(\frac{1}{x}\)=\(\frac{y}{8}\)+\(\frac{1}{16}\)
<=> \(\frac{1}{x}\)=\(\frac{1+2y}{16}\)
<=>x(1+2y)=16
(1+2y) là số lẻ ={1,-1}
TH 1: (1+2y)=1 => y=0 và x=16
TH2: (1+2y)=-1=> y=-1 và x=-16
Vậy ta tìm được 2 cặp nghiệm: y=0 ; x=16 hoặc y=-1 , x=-16