Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ
P2 TÁCH SỐ
1x22 +2x32+3x42 +.....+2018x20192 + 2019x20202
= 1x2x3 - 1x2 + 2x3x4 - 2x3+ 3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020
=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)
= S - P (*****)
Tính 4S => S=..... (1)
Tính 3P => P=..... (2)
TỪ (1) và (2) thay vào (*****) TA TÍNH ĐƯỢC A=.....
3 phần trên đễ quá mik ko làm mik chỉ làm phàn 4 thôi nhé
4) ta có: (x-3)^x+2=(x-3)^x+6
=>(x-3)^x*(x-3)^2=(x-3)^x*(x-3)^6
=>(x-3)^x=(x-3)^x*(x-3)^4
=>(x-3)^x*(x-3)^4-(x-3)^x*1=0
=>(x-3)^x*((x-3)^4-1)=0
=>(x-3)^x=0 hoặc (x-3)^4-1=0
còn lại cậu tự làm nha nó đẽ mà
BÀI 1 :
a) |-15|+(-27)+8+|-23|
= 15-27+8+23
=19
b) 5\(^8\):5\(^6\)+2\(^2\).3\(^3\)-2020\(^0\)
= 5\(^2\)+4.27-1
=25+108-1
=132
BÀI 2 :
a) 7\(^x\).49=7\(^{50}\)
=> 7\(^x\).7\(^2\)=7\(^{50}\)
=> 7\(^x\)=7\(^{50}\):7\(^2\)=7\(^{48}\)
=> x= 48
vậy x = 48
b) ( 3x - 1 )\(^3\) = 125
=> ( 3x - 1 )\(^3\) = 5\(^3\)
=> 3x - 1 = 5
=> 3x = 6
=> x = 2
Vậy x = 2
c) Câu c bạn viết lại đề bài nhé. Mk giải sau
\(\left(x-2019\right)^{2020}=1\)
\(\left(x-2019\right)^{2020}=1^{2020}\)
\(x-2019=1\)
\(x=1+2019\)
\(x=2020\)
\(b,5^{x+1}-2\cdot4^2=10^2-7\)
\(5^{x+1}-2\cdot16=100-7\)
\(5^{x+1}-32=93\)
\(5^{x+1}=93+32=125\)
\(5^{x+1}=5^3\)
\(x+1=3\)
\(x=3-1\)
\(x=2\)
\(\left(x-2019\right)^{2020}=1\)
a,\(\left(x-2019\right)^{2020}=1^{2020}\)
\(\Rightarrow\orbr{\begin{cases}x-2019=1\Rightarrow x=2020\\x-2019=-1\Rightarrow x=2018\end{cases}}\)
b,\(2:5^{x+1}-2.4^2=10^2-7\)
\(5^{x+1}-2.16=100-7\)
\(5^{x+1}-32=93\)
\(5^{x+1}=93+32\)
\(5^{x+1}=125\)
\(5^{x+1}=5^3\)
Vì \(5=5\)
\(\Rightarrow x+1=3\)
\(x=3-1\)
\(x=2\)