\(1-3+3^2-3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

c)

Gọi đa thức \(ax^3+bx^2+c\)\(f\left(x\right)\).

Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:

\(f\left(-2\right)=-8a+4b+c=0\)(1)

Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:

\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)

Nghiệm của \(x^2-1\)\(1\)\(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :

\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)

Từ (1), (2) và (3), ta có HPT:

\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)

Vậy a=1;b=1 và c=4

5 tháng 8 2018

b)

Gọi đa thức \(x^3+ax+b\)\(f\left(x\right)\)

Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.

Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.

Theo bài ra ta có PT:

\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)

Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Vậy a=-10, b=-2

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Bài 1:
Ta có:

\(2x^2+4x^3-7=4x^2(x-3)+14x(x-3)+42(x-3)+119\)

\(=(x-3)(4x^2+14x+42)+119\)

Do đó phép chia $2x^2+4x^3-7$ cho $x-3$ có thương là $4x^2+14x+42$ và dư là $119$

Bài 2:

Theo định lý Bê-du về phép chia đa thức thì phép chia đa thức $f(x)$ cho $x-a$ có dư là $f(a)$

Áp dụng vào bài toán:

\(f(2)=-23\)

\(\Leftrightarrow 2^3-4.2^2+5.2+a=-23\)

\(\Leftrightarrow 2+a=-23\Rightarrow a=-25\)

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Bài 3:

Ta có:

\(x^3+ax+b=x(x^2+2x+1)-2x^2-x+ax+b\)

\(=x(x^2+2x+1)-2(x^2+2x+1)+3x+2+ax+b\)

\(=(x-2)(x+1)^2+x(a+3)+(b+2)\)

Vậy $x^3+ax+b$ khi chia $(x+1)^2$ có dư là $x(a+3)+(b+2)$

\(\Rightarrow \left\{\begin{matrix} a+3=2\\ b+2=1\end{matrix}\right.\Rightarrow a=-1; b=-1\)

Bài 4:

\(x^2+y^2-4y+5=0\)

\(\Leftrightarrow x^2+(y^2-4y+4)+1=0\)

\(\Leftrightarrow x^2+(y-2)^2+1=0\)

\(\Rightarrow x^2+(y-2)^2=-1\)

Rõ ràng vế trái luôn không âm, mà vế phải âm nên vô lý

Vậy pt vô nghiệm, không tồn tại $x,y$ thỏa mãn.

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

NV
14 tháng 2 2020

1/ \(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)

2/ \(F\left(x\right)=P\left(x\right).\left(x+2\right)+10\Rightarrow F\left(-2\right)=10\)

\(F\left(x\right)=Q\left(x\right).\left(x-2\right)+24\Rightarrow F\left(2\right)=24\)

Do \(x^2-4\) bậc 2 nên đa thức dư tối đa là bậc nhất có dạng \(ax+b\)

\(F\left(x\right)=R\left(x\right).\left(x^2-4\right)+ax+b\)

Thay \(x=-2\Rightarrow F\left(-2\right)=-2a+b=10\)

Thay \(x=2\Rightarrow F\left(2\right)=2a+b=24\)

\(\Rightarrow\left\{{}\begin{matrix}-2a+b=10\\2a+b=24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\) \(\Rightarrow\)\(\frac{7}{2}x+17\)

14 tháng 2 2020

3/Vì đa thức chia có bậc 2 nên đa thức dư có bậc 1, có dạng ax+b. Ta có :\(x^{2015}+x^{1945}+x^{1930}+x^2-x+1=Q\left(x\right).\left(x^2-1\right)+ax+b\)Thay x=1 được 4=a+b(1)

Thay x=-1 được 2=-a+b(2)

Cộng (1) và (2) được 6=2b suy ra b=3, từ đó suy ra a=1

Vậy dư là x+3

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

6 tháng 7 2018

1/

a,\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{5}{-2}=\frac{-5}{2}\)

b, \(x^2+y^2=\left(x+y\right)^2-2xy=5^2-2.\left(-2\right)=25+4=29\)

c,\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.\left(-2\right).5=125+30=155\)

d,thiếu dữ kiện

2.

Ta có: a chia 7 dư 3 => a=7k+3 (k thuộc N)

=>\(a^2=\left(7k+3\right)\left(7k+3\right)=7k\left(7k+3\right)+3\left(7k+3\right)=7k\left(7k+3\right)+3.7k+3.3=7k\left(7k+3\right)+3.7k+7+2\)chia 7 dư 2

Vậy...

6 tháng 7 2018

M nhanh thật đấy hương