\(x^2-2mx+2\left|x-m\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)

rút x từ (1) thế vào (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)

\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)

\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)

\(\Leftrightarrow Ay=B\)

Taco

\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)

\(\Rightarrow y>0\forall m\in R\)

Kết luận không có m thủa mãn

11 tháng 4 2020

a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)

\(\Leftrightarrow x>-1\)

Nghiệm của $VT(*)$ là $S=(-1;+\infty)$

b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$

$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:

- + -4 0 1 + - - + 0 0 0 x VT(*)

Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$

11 tháng 4 2020

Khách? Khi mà

NV
23 tháng 5 2020

a/ Do \(a=2>0\) nên BPT đã cho có nghiệm với mọi m

b/

- Với \(m\le1\) BPT luôn có nghiệm

- Với \(m>1\) để BPT có nghiệm

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m-1\right)\left(-m+2\right)\ge0\)

\(\Leftrightarrow2m^2+3m+11\ge0\)

\(\Leftrightarrow2\left(m+\frac{3}{4}\right)^2+\frac{79}{8}\ge0\) (luôn đúng)

Vậy BPT đã cho có nghiệm với mọi m

10 tháng 2 2020

\(-3x^2+5x-4=-\left(3x^2-5x+4\right)=-\left(3x^2-2\cdot\sqrt{3}\cdot\frac{5\sqrt{3}}{6}+\frac{25}{12}+\frac{23}{12}\right)\)

\(=-[\left(\sqrt{3}x-\frac{5\sqrt{3}}{6}\right)^2+\frac{23}{12}]< 0\)

Để bpt >0 thì

\(\left(m-4\right)x^2+\left(1+m\right)x+2m-1< 0\) (1)

\(\Delta=\left(m+1\right)^2-4\cdot\left(m-4\right)\cdot\left(2m-1\right)=-7m^2+38m-15\)

ĐK \(\left\{{}\begin{matrix}\Delta< 0\\a< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \frac{19-\sqrt{466}}{7}\\m>\frac{19+\sqrt{466}}{7}\end{matrix}\right.\\m< 4\end{matrix}\right.\)

\(\Leftrightarrow m< \frac{19-\sqrt{466}}{7}\)

1 tháng 4 2020

a, \(f\left(x\right)=-x^2+mx+m+1\)

Để f(x) \(\le0\) \(\forall x\in R\)\(a=-1< 0\)

\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)

\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)

b, Để hàm số y xác định \(\forall x\in R\)

\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)

NV
1 tháng 4 2020

a/ Do \(a=-1< 0\)

\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)

\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)

\(\Rightarrow m=-2\)

b/ Để hàm số xác định với mọi x

\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)

- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn

- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)

Vậy \(0\le m< 2\)