\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

12 tháng 10 2019

Bài 1:

\(A=\frac{a+b}{b+c}.\)

Ta có:

\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)

\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)

\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)

\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)

Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)

Bài 2:

a) \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow648+280=7x+9x\)

\(\Rightarrow928=16x\)

\(\Rightarrow x=928:16\)

\(\Rightarrow x=58\)

Vậy \(x=58.\)

b) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2019

Bài 2:

a, \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow9.72-9.x=7.x-7.40\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow-9x-7x=-280-648\)

\(\Rightarrow-16x=-648\)

\(\Rightarrow x=58\)

Vậy \(x=58\)

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

10 tháng 12 2019

a) \(3,6-\left|x-0,4\right|=0\)

\(\Leftrightarrow\left|x-0,4\right|=3,6\)

\(\Leftrightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)

Vậy \(x\in\left\{4;-3,2\right\}\)

b) Ta có:

\(\frac{x}{2}=y=\frac{z}{3}=\frac{2y}{2}=\frac{x-2y+z}{2-2+3}=\frac{210}{3}=70\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=70\\y=70\\\frac{z}{3}=70\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=140\\y=70\\z=210\end{matrix}\right.\)

Vậy \(x=140\); \(y=70\); \(z=210\)

c)\(\left|x+0,25\right|-4=\frac{1}{4}\)

\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=\frac{-17}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{-9}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{4;\frac{-9}{2}\right\}\)

d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,25\right)^4.\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,5\right)^8.\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,5\right)^{10}=\left(\frac{1}{2}\right)^{10}=\frac{1}{2^{10}}=\frac{1}{1024}\)

Vậy \(x=\frac{1}{1024}\)

e) \(3^{x-1}+5.3^{x-1}=162\)

\(\Leftrightarrow6.3^{x-1}=162\)

\(\Leftrightarrow3^{x-1}=27\)

\(\Leftrightarrow3^{x-1}=3^3\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

f) \(\frac{x}{-25}=\frac{2}{5}\)

\(\Leftrightarrow x=\left(-25\right).\frac{2}{5}=-10\)

Vậy \(x=-10\)

g) \(\left|x+\frac{3}{4}\right|-\frac{3}{4}=\sqrt{\frac{1}{9}}\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|-\frac{3}{4}=\frac{1}{3}\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{13}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{13}{12}\\x+\frac{3}{4}=-\frac{13}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{11}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{3};-\frac{11}{6}\right\}\)

10 tháng 12 2019

a) \(3,6-\left|x-0,4\right|=0\)

\(\Rightarrow\left|x-0,4\right|=3,6-0\)

\(\Rightarrow\left|x-0,4\right|=3,6.\)

\(\Rightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3,6+0,4\\x=\left(-3,6\right)+0,4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)

Vậy \(x\in\left\{4;-3,2\right\}.\)

c) \(\left|x+0,25\right|-4=\frac{1}{4}\)

\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{1}{4}+4\)

\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=-\frac{17}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{17}{4}-\frac{1}{4}\\x=\left(-\frac{17}{4}\right)-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{9}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{4;-\frac{9}{2}\right\}.\)

d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)

\(\Rightarrow x:\left(0,25\right)^4=0,25\)

\(\Rightarrow x=\left(0,25\right).\left(0,25\right)^4\)

\(\Rightarrow x=\left(0,25\right)^5\)

\(\Rightarrow x=\frac{1}{1024}\)

Vậy \(x=\frac{1}{1024}.\)

Chúc bạn học tốt!

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

17 tháng 8 2019

Bài 2:

1)

a) \(\frac{3}{5}-x=25\%\)

=> \(\frac{3}{5}-x=\frac{1}{4}\)

=> \(x=\frac{3}{5}-\frac{1}{4}\)

=> \(x=\frac{7}{20}\)

Vậy \(x=\frac{7}{20}.\)

b) \(0,16:x=x:36\)

=> \(\frac{0,16}{x}=\frac{x}{36}\)

=> \(0,16.36=x.x\)

=> \(x.x=\frac{144}{25}\)

=> \(x^2=\frac{144}{25}\)

=> \(\left[{}\begin{matrix}x=\frac{12}{5}\\x=-\frac{12}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{12}{5};-\frac{12}{5}\right\}.\)

2)

a) Ta có: \(5x=7y.\)

=> \(\frac{x}{y}=\frac{7}{5}\)

=> \(\frac{x}{7}=\frac{y}{5}\)\(y-x=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{18}{-2}=-9.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=-9=>x=\left(-9\right).7=-63\\\frac{y}{5}=-9=>y=\left(-9\right).5=-45\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-63;-45\right).\)

b) Ta có: \(\frac{x}{y}=0,8.\)

=> \(\frac{x}{y}=\frac{4}{5}\)

=> \(\frac{x}{4}=\frac{y}{5}\)\(x+y=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{4}=2=>x=2.4=8\\\frac{y}{5}=2=>y=2.5=10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(8;10\right).\)

Mình chỉ làm thế này thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

mik chỉ làm b3,2 thôi nha^_^