Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+9+9^2+...+9^{2017}.\)
\(S=\left(1+9\right)+\left(9^2+9^3\right)+....+\left(9^{2016}+9^{2017}\right)\)
\(S=10+10.9^2+...+10.9^{2016}\)
\(S=1.\left(1+9^2+....+9^{2016}\right)⋮10\)
\(\Rightarrow S⋮10\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)
Vậy \(S=\frac{511}{512}\)
Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)
\(\Rightarrow2S-S=1-\frac{1}{2^9}\)
\(\Leftrightarrow S=1-\frac{1}{2^9}\)
\(\left(1-\frac{4}{1}\right).\left(1-\frac{4}{9}\right)...\left(1-\frac{4}{2017^2}\right)\)
\(=\left(\frac{1-4}{1}\right).\left(\frac{9-4}{9}\right)...\left(\frac{2017^2-4}{2017^2}\right)\)
\(=\left(-3\right).\left(\frac{1.5}{3.3}\right).\left(\frac{3.7}{5.5}\right)...\left(\frac{2015.2019}{2017.2017}\right)\)
\(=-\left(3\right).\frac{1}{3}.\frac{2019}{2017}=-\frac{2019}{2017}\)
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\) và \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
Suy ra:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
S = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{8}\) + \(\dfrac{1}{9}\)
Vì \(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>..>\dfrac{1}{9}\) ta có:
\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) > \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}>\dfrac{1}{9}.5\) = \(\dfrac{5}{9}>\dfrac{5}{10}=\dfrac{1}{2}\)
Cộng vế với vế ta có:
S > \(\dfrac{1}{2}+\dfrac{1}{2}=1\) (1)
\(\dfrac{1}{3}+\dfrac{1}{4}< \dfrac{2}{3}\)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}.5=1\)
Cộng vế với vế ta có:
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\) < \(\dfrac{2}{3}\) + 1 < 2 (2)
Kết hợp (1) và (2) ta có:
1 < S < 2 (đpcm)
a, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{10^2}>\frac{1}{10.11}\)
\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Vậy S > 9/22
b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow S>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
Vậy S > 9/10
Ta có : S =\(\frac{1}{2^2}\)\(+\)\(\frac{1}{3^2}\)\(+\)...\(+\)\(\frac{1}{9^2}\)
= \(\frac{1}{2.2}\)\(+\)\(\frac{1}{3.3}\)\(+\)...\(+\)\(\frac{1}{9^2}\)
\(\Rightarrow\)S > \(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)...\(+\)\(\frac{1}{9.10}\)
= \(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)..\(+\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)
= \(\frac{1}{2}\)\(-\)\(\frac{1}{10}\)
\(\Rightarrow\)S < \(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)...\(+\)\(\frac{1}{8.9}\)
=\(1\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)...\(+\)\(\frac{1}{8}\)\(-\)\(\frac{1}{9}\)
= \(1\)\(-\)\(\frac{1}{9}\)= \(\frac{8}{9}\)
Vậy \(\frac{2}{5}\)< S < \(\frac{8}{9}\)(đpcm)
Chúc bạn học tốt
=> 9S=9+9^2+9^3+...+9^2018
=> 9S-S=8S=(9+9^2+9^3+...+9^2018)-(1+9+9^2+9^3+...+9^2017)
=> 8S=9+9^2+...+9^2018-1-9-9^2-...-9^2017
=> 8S=9^2018-1
=> S=(9^2018-1)/8