\(\frac{\sqrt{28-6\sqrt{3}}-1}{28-6\sqrt{3}+\sqrt{28-6\sqrt{3}+1}}\)

2....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)

Ta có: \(Q=\frac{-5\sqrt{x}+4}{3\sqrt{x}-2}+\frac{6\sqrt{x}+4}{2\sqrt{x}+3}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)

\(=\frac{3\left(-5\sqrt{x}+4\right)\left(2\sqrt{x}+3\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(6\sqrt{x}+4\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{3\left(-10x-7\sqrt{x}+12\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(18x-8\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{-30x-21\sqrt{x}+36+54x-24+29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{24x+8\sqrt{x}-16}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{8\left(3x+3\sqrt{x}-2\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{8\left(\sqrt{x}+1\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{8\sqrt{x}+8}{6\sqrt{x}+9}\)

2) Để \(Q>\frac{8}{3}\) thì \(Q-\frac{8}{3}>0\)

\(\Leftrightarrow\frac{8\sqrt{x}+8}{6\sqrt{x}+9}-\frac{8}{3}>0\)

\(\Leftrightarrow\frac{24\sqrt{x}+24}{3\left(6\sqrt{x}+9\right)}-\frac{8\left(6\sqrt{x}+9\right)}{3\left(6\sqrt{x}+9\right)}>0\)

\(\Leftrightarrow\frac{24\sqrt{x}+24-48\sqrt{x}-72}{9\left(2\sqrt{x}+3\right)}>0\)

\(9\left(2\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ

nên \(-24\sqrt{x}-48>0\)

\(\Leftrightarrow-24\left(\sqrt{x}+2\right)>0\)

\(\Leftrightarrow\sqrt{x}+2< 0\)(Vô lý)

Vậy: Không có giá trị nào của x thỏa mãn \(Q>\frac{8}{3}\)

9 tháng 10 2019

a)= \(\left(3+\sqrt{5}\right)\left(\sqrt{\left(3-\sqrt{5}\right)^2}\right)\)=\(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)

b)= \(\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{\sqrt{2^2.7}}{2}-2\)=\(\frac{2\left(3-\sqrt{7}\right)}{9-7}+\sqrt{7}-2\)=1

c) =\(\frac{3}{3\left(\sqrt{7}-2\right)}-\frac{3}{3\left(\sqrt{7}+2\right)}\)=\(\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}=\frac{\sqrt{7}+2-\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}\)=\(\frac{4}{7-4}=\frac{4}{3}\)

d) =\(\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)^{ }\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{\left(88-44\sqrt{3}\right)}{25-3}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{22\left(4-2\sqrt{3}\right)}{22}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(1+\sqrt{3}\right)\left(\sqrt{3}-1\right)\)=3-1 = 2

e) = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{7\sqrt{x}-3}{x-9}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\)\(\frac{x-4\sqrt{x}+3}{x-9}+\frac{7\sqrt{x}-3}{x-9}+\sqrt{x}\)\(\frac{x+3\sqrt{x}}{x-9}+\sqrt{x}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\sqrt{x}\)\(\frac{\sqrt{x}}{\sqrt{x}-3}+\sqrt{x}=\frac{x-2\sqrt{x}}{\sqrt{x}-3}\)

19 tháng 9 2019

4.a)\(x-2\sqrt{x}+3\)

\(=x-2\sqrt{x}+1+2\)

\(=\left(\sqrt{x}-1\right)^2+2\)

\(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)

\(\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

b)Ta có:

\(x-4\sqrt{y}+13\ge0\)

\(\Leftrightarrow x-4\sqrt{y}\ge-13\)

Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)

Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)

c)Ta có:

\(2x-4\sqrt{y}+6\ge0\)

\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)

\(\Leftrightarrow x-2\sqrt{y}\ge-3\)

Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)

Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)

d)Ta có:

\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)

\(\left(x+1\right)^2\ge0,\forall x\)

\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)

\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)

Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)

19 tháng 9 2019

zài zậy

26 tháng 2 2020

M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)

    =\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)

5 tháng 8 2019

a) \(A=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=-1+\frac{4}{\sqrt{x}-2}\)

Để \(A\in Z\Leftrightarrow\sqrt{x}-2\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-2;0;1;3;4;6\right\}\)

\(x\in Z;\sqrt{x}\ge0\Rightarrow x\in\left\{0;1;9;16;36\right\}\)

b)\(A=\frac{4\sqrt{x}-2+3}{2\sqrt{x}-1}=2+\frac{3}{2\sqrt{x}-1}\)

Để \(A\in Z\Leftrightarrow2\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{-2;0;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-1;0;1;2\right\}\Leftrightarrow x\in\left\{0;1;4\right\}\)

5 tháng 8 2019

a) A= \(\frac{-\sqrt{x}+6}{\sqrt{x}-2}=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}=\frac{4}{\sqrt{x}-2}-1\)

\(\sqrt{x}-2\inƯ\left(4\right)\) ⇒ x = 36

25 tháng 6 2019

Câu 1,2 tự bấm máy tính

câu 3 xem lại đề bài

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu