Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15^5.10^5}{6^6.25^6}\)
\(=\frac{3^5.5^5.2^5.5^5}{3^6.2^6.5^{12}}\)
\(=\frac{3^5.2^5.5^{10}}{3^6.2^6.5^{12}}\)
\(=\frac{1}{3.2.5^2}\)
\(\frac{\left(5^4.5^3\right)^3}{125^4}\)
\(=\frac{\left(5^7\right)^3}{5^{12}}\)
\(=\frac{5^{21}}{5^{12}}\)
\(=5^9\)
\(\frac{8^{11}.3^{17}}{27^{10}.9^{15}}=\frac{8^{11}.3^{17}}{3^{30}.3^{30}}=\frac{8^{11}}{3^{13}.3^{30}}=\frac{8^{11}}{3^{43}}\)
\(\frac{\left(5^4-5^3\right)^3}{125^4}=\frac{[\left(5-1\right).5^3]^3}{5^{12}}=\frac{\left(4.5^3\right)^3}{5^{12}}=\frac{64.5^9}{5^{12}}=\frac{64}{5^3}=\left(\frac{4}{5}\right)^3\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{40}-2^{20}+6^{20}}{6^{20}-3^{20}+3^{40}}=\frac{2^{20}.\left(2^{20}-1+3^{30}\right)}{3^{20}.\left(2^{20}-2+3^{20}\right)}=\frac{2^{20}}{3^{20}}=\left(\frac{2}{3}\right)^{20}\)
\(a,3^{16}:3=3^{16-1}=3^{15}\)
\(b,3^6.3^4.3^2.3=3^{6+4+2+1}=3^{13}\)
\(c,\left(-\frac{1}{4}\right).\left(6\frac{2}{11}\right)+\left(3\frac{9}{11}\right).\left(-\frac{1}{4}\right)=\left(-\frac{1}{4}\right).\frac{68}{11}+\frac{42}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right)\left(\frac{68}{11}+\frac{42}{11}\right)\)
\(=\left(-\frac{1}{4}\right).10\)
\(=-\frac{10}{4}=-\frac{5}{2}\)
\(d,\left(-\frac{1}{2}\right)^3+\frac{1}{2}:5=\left(-\frac{1}{2}\right)\left(\left(\frac{1}{2}\right)^2-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\frac{1}{20}\)
\(=-\frac{1}{40}\)
\(g,1\frac{1}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}=\frac{26}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}\)
\(=\left(\frac{26}{25}-\frac{1}{25}\right)+\left(\frac{2}{21}+\frac{19}{21}\right)\)
\(=1+1\)
\(=2\)
Câu 1:
a)\(\left(\frac{2}{3}\right)^2=\frac{4}{9}\) b)\(\left(-2\frac{3}{4}\right)^2=\left(-\frac{11}{4}\right)^2=\frac{121}{16}\)
c)\(\left(0,6\right)^4=\left(\frac{3}{5}\right)^4=\frac{81}{625}\) d)\(\left(-\frac{1}{2}\right)^4=\frac{1}{16}\)
e)\(\left(-\frac{1}{5}\right)^5=\frac{-1}{3125}\)
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
a) \(\frac{15^5.10^5}{6^6.25^6}\)= (15.10)^5/(6.25)^6=150^5/150^6=1/150
\(^{\frac{\left(5^4-5^3\right)^3}{125^4}=\frac{\left[5^3\cdot\left(5-1\right)\right]^3}{\left(5^3\right)^4}=\frac{\left[5^3\cdot4\right]^3}{5^3\cdot4}=\frac{\left(5^3\right)^3\cdot4^3}{5^{12}}=\frac{5^9\cdot4^3}{5^9\cdot5^3}=\frac{4^3}{5^3}}\)