Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)
\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{1}{5}-\dfrac{1}{61}\)
\(S=\dfrac{56}{305}\)
Vậy S = \(\dfrac{56}{305}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
S = \(\dfrac{3}{1.2}\)+\(\dfrac{3}{2.3}\)+\(\dfrac{3}{3.4}\)+\(\dfrac{3}{4.5}\)+...+\(\dfrac{3}{2015.2016}\)
= 3.\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2015.2016}\right)\)
= 3.\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
= 3.\(\left(1-\dfrac{1}{2016}\right)\) = 3.\(\dfrac{2015}{2016}\)=\(\dfrac{3.2015}{2016}\)=\(\dfrac{1.2015}{672}\)=\(\dfrac{2015}{672}\)
Vậy S = \(\dfrac{2015}{672}\)
Ta có S=\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+\dfrac{3}{4.5}+...+\dfrac{3}{2015.2016}\)
=3.(\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2015.2016}\))
=3.(\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\))
=\(3.\left(1-\dfrac{1}{2016}\right)\)
= \(3-\dfrac{1}{672}\)=\(\dfrac{2015}{672}=2\dfrac{671}{672}\)
a, Ta có: \(\dfrac{32}{37}>\dfrac{32}{54}>\dfrac{19}{54}\Rightarrow\dfrac{32}{37}>\dfrac{19}{54}\)
b, Ta có: \(\dfrac{18}{53}>\dfrac{18}{54}=\dfrac{1}{3}\Rightarrow\dfrac{18}{53}>\dfrac{1}{3}\left(1\right)\)
\(\dfrac{26}{78}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{18}{53}>\dfrac{26}{78}\)
c, Ta thấy: \(\dfrac{25}{103}< \dfrac{25}{100}=\dfrac{1}{4}\left(1\right)\)
\(\dfrac{74}{295}>\dfrac{74}{296}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{25}{103}< \dfrac{74}{295}\)
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
\(4\dfrac{1}{3}.\dfrac{4}{9}+13\dfrac{2}{3}.\dfrac{4}{9}\)\(=\dfrac{4}{9}\left(4\dfrac{1}{3}+13\dfrac{2}{3}\right)=\dfrac{4}{9}.18=8\)
\(5\dfrac{1}{4}.\dfrac{3}{8}+10\dfrac{3}{4}.\dfrac{3}{8}=\dfrac{3}{8}\left(5\dfrac{1}{4}+10\dfrac{3}{4}\right)=\dfrac{3}{8}.16=6\)
Gọi phân số tối giản cần tìm là \(\dfrac{a}{b}\)
Ta có:\(\dfrac{a}{b}\):\(\dfrac{5}{11}\)=\(\dfrac{11a}{5b}\)
\(\dfrac{a}{b}\):\(\dfrac{11}{21}\)\(\dfrac{21a}{11b}\)
\(\dfrac{a}{b}\):\(\dfrac{25}{28}\)=\(\dfrac{28a}{25b}\)
Vì cả 3 thương trên là số tự nhiên nên a chia hết cho 5,11,25\(\)\(\Rightarrow\)a\(\in\)BCNN(5;11;25)\(\Rightarrow\)a=275
Do đó b\(\in\)ƯCLN(11,21,28)=1
Vậy phân số tối giản cần tìm là \(\dfrac{275}{1}\)
Bài 1:
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)
Lây vế trừ vế, ta được:
\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)
\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)
Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).
Chúc bạn học tốt!
Bài 2:
Có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)
\(\Leftrightarrow B=273+...+3^{1986}.273\)
\(\Leftrightarrow B=273\left(1+...+1986\right)\)
Vì \(273⋮13\)
Nên \(B=273\left(1+...+1986\right)⋮13\)
Vậy \(B⋮13\)
Lại có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)
\(\Leftrightarrow B=2460+...+3^{1984}.2460\)
\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)
Vì \(2460⋮41\)
Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)
Vậy \(B⋮41\).
Chúc bạn học tốt!