\(x^2y^2-x^2-3y^2-2x-1=0\)

2)Cho tam giác BAC,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

3. \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)

\(x^2\left(2x^2+\frac{1}{x^2}+\frac{y^2}{4}\right)=4x^2\)

\(2x^4+1+\frac{x^2y^2}{4}=4x^2\)

\(\frac{x^2y^2}{4}=4x^2-2x^4-1\)

\(x^2y^2=16x^2-8x^4-4=-8\left(x^4-2x^2+1\right)+4=-8\left(x^2-1\right)^2\le4\)

\(xy\le2\) do đó xy min =2

<=> x=-1,y=-2

    x=1 y=2

x=1 y=-2

x=-1 y=2

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

27 tháng 9 2019

1. 

\(DK:x\ge2\)

\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)

\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)

PT(2) khac khong voi moi \(x\ge2\)

Vay nghiem cua PT la \(x=3\)

27 tháng 9 2019

\(x^3+2x=y^2-2009\)

\(\Leftrightarrow x^3-x=y^2-3x-2009\)

\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)

Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3 

Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 ) 

Vậy pt vô nghiệm

                                    Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)và cba =\(\left(n-2\right)^2\)2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)3.a) Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và...
Đọc tiếp

                                    Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)

1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)cba =\(\left(n-2\right)^2\)

2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)

3.a) Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và xy>0.Tìm max của M=\(\frac{1}{x}+\frac{1}{y}\) 

b)CM:\(P=\frac{3-\sqrt{3+\sqrt{3+....+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< \frac{1}{5}\)(Tử có 2007 dấu căn,Mẫu  có 2006 dấu căn)

4.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và có trực tâm H.Giả sử M là 1 điểm trên cung BC không chứa A

(M khác B,C).Gọi N,P lần lượt là điểm đối xứng của M qua các đường thẳng AB,AC.

a)CM: tứ giác AHCP nội tiếp  

b)CM: N,H,P thẳng hàng 

c)Tìm vị trí của M  để NP lớn nhất

5. Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Gọi D,E,F, lần lượt là giao điểm của các đường thẳng AO vs BC;BO vs AC;CO vs AB.CM AD+BE+CF\(\ge\)\(\frac{9R}{2}\)

0
7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :DCâu 1:a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)Câu 2:a) Giải phương...
Đọc tiếp

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :D

Câu 1:

a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)

b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)

Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)

Câu 2:

a) Giải phương trình: \(\frac{\sqrt{3x+1}+\sqrt{x+3}}{x+5+\sqrt{2\left(x^2+1\right)}}=\left(1-x\right)\sqrt{1-x}+\frac{3-3\sqrt{x}}{2}\)

b) Giải hệ phương trình:  \(\hept{\begin{cases}14x^2-21y^2-6x+45y-14=0\\35x^2+28y^2+41x-122y+56=0\end{cases}}\)

Câu 3:

a)  Cho \(x_0;x_1;x_2;.......\) được xác định bởi: \(x_n=\left[\frac{n+1}{\sqrt{2}}\right]-\left[\frac{n}{\sqrt{2}}\right]\).

Hỏi trong 2006 số đầu tiên của dãy có mấy số khác 0

b)  Giải phương trình nghiệm nguyên: \(m^n=n^{m-n}\)

c) Cho phương trình \(x^2-4x+1=0\). Gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Đặt \(a_n=\frac{x_1^n+x_2^n}{2\sqrt{3}}\) với n là số nguyên dương. Chứng minh rằng \(a_n\) là một số nguyên với mọi n

d) Cho bộ số nguyên dương thỏa mãn \(a^2+b^2=c^2\). Chứng minh rằng không thể tồn tại số nguyên dương n sao cho:

\(\left(\frac{c}{a}+\frac{c}{b}\right)^2=n\)

Câu 4:

a) Cho các số dương a,b,c. Chứng minh rằng:

\(\frac{a\left(b+c\right)}{a^2+bc}+\frac{b\left(c+a\right)}{b^2+ca}+\frac{c\left(a+b\right)}{c^2+ab}\ge1+\frac{16abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

b) Cho các số không âm a,b,c thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{b^2-bc+c^2}{a^2+bc}}+\sqrt{\frac{c^2-ca+a^2}{b^2+ca}}+\sqrt{\frac{a^2-ab+b^2}{c^2+ab}}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Câu 5:

1)

Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H, EF cắt BC tại P. Qua D kẻ đường thẳng song song EF cắt AB, AC lần lượt tại Q, R.

a) Chứng minh rằng \(\frac{PB}{PC}=\frac{DB}{DC}\)

b) Gọi X là trung điểm AH. EF cắt AH tại Y. Chứng minh rằng Y là trực tâm tam giác XBC.

2)

Cho E và F lần lượt là các trung điểm của cạnh AD và CD của hình bình hành ABCD sao cho \(\widehat{AEB}=\widehat{AFB}=90^0\), và G là điểm nằm trên BF sao cho EG // AB. Gọi DH, AF lần lượt cắt cạnh BC, BE tại I, H. Chứng minh  rằng \(FI\perp FH\)

Câu 6:

Tìm giá trị nhỏ nhất của a là cạnh hình vuông sao cho có thể đặt 5 tấm bìa hình tròn bán kính 1 trong hình vuông đó mà các tấm bìa không chờm lên nhau.

 GOODLUCK.

WARNING: COMMENT LUNG TUNG SẼ BỊ CÔ QUẢN LÝ CHO "PAY ẶC" nhé !

Thời gian làm bài ( 180 phút ).

16
8 tháng 8 2020

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

8 tháng 8 2020

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.