Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.a)n2(n+1)+2n(n+1)=(n+1)(n2+2n)=n(n+1)(n+2)
n,(n+1),(n+2) là ba số nguyên liên tiếp nên chia hết cho 2 và 3
\(\Rightarrow\)n(n+1)(n+2) chia hết cho 6
4 Chứng minh rằng:
a)\(n^2+\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
Ta có:
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Ta thấy n , n+1 và n+2 là ba số tự nhiên liên tiếp
=> n(n+1) (n+2)\(⋮\)6
=> đpcm
b)\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=\left(2n-1\right).2\left(n-1\right).2n\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
=>\(4n\left(2n-1\right)\left(n-1\right)⋮4\left(1\right)\)
Mà(2n-1)(n-1)=(n+n-1)(n-1)
=>\(\left(2n-1\right)\left(n-1\right)⋮2\left(2\right)\)
Từ (1) và (2)=> Đpcm
c)\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Câu hỏi của Ngoc An Pham - Toán lớp 8 | Học trực tuyến
Chúc bạn học tốt!^^
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
\(x^2-x-6=x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)\)
\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(x^3-19x-30=\left(x^3+8\right)-\left(19x-38\right)=\left(x+2\right)\left(x^2-2x+4\right)-19\left(x+2\right)=\left(x+2\right)\left(x^2-2x-15\right)=\left(x+2\right)\left(x^2-5x+3x-15\right)=\left(x+2\right)\left(x-5\right)\left(x+3\right)\)
\(x^4+4x^2-5=x^4+4x^2+4-9=\left(x^2+2\right)^2-9=\left(x^2+5\right)\left(x^2-1\right)=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(x^3-7x-6=0\Leftrightarrow\left(x^3+1\right)-\left(7x+7\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=-1\end{matrix}\right.\)
\(x^3-3x^2-16x+48=x^2\left(x-3\right)-16\left(x-3\right)=\left(x^2-16\right)\left(x-3\right)=\left(x-4\right)\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-4\end{matrix}\right.\)
\(x^3-3x^2+2x-6=0\)
\(\Rightarrow x^2\left(x-3\right)+2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+3\right)=0\)
\(\Rightarrow x=3\) (vì \(\left(x^2+3>0\forall x\right)\)
Bài 2: viết sai đề bài rồi.
n là số tự nhiên lẻ nên n có dạng n = 2k + 1
Ta có:
\(A=n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n+1\right)\left(n-1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\left(2k+1-1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)
\(=8k\left(k+1\right)\left(k+2\right)⋮8\)
Chúc bạn học tốt.