∈∈Z biết ( x33 + 5 ) . ( x33
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

a) x=\(\dfrac{5.6}{-10}=-3.\)

b) y=\(\dfrac{3.77}{-33}=-7.\)

30 tháng 1 2019

x=-3

y=-7

8 tháng 2 2017

Bài 1 :

\(\frac{x}{5}=\frac{6}{-10}\Rightarrow x=\frac{5.6}{-10}=-3\)

\(\frac{3}{y}=-\frac{33}{77}=-\frac{3}{7}\Rightarrow y=\frac{7.3}{-3}=-7\)

Bài 2 :

\(\frac{52}{71};\frac{-4}{17};\frac{-5}{29};\frac{-31}{33}\)

Bài 3 :\(2.36=8.9\Rightarrow\frac{2}{8}=\frac{9}{36};\frac{8}{2}=\frac{36}{9};\frac{2}{9}=\frac{8}{36};\frac{9}{2}=\frac{36}{8}\)

8 tháng 2 2019

câu 1 x^2 +3x=xx+3x=x(x+3) vì x+3 chia hết cho x+3 nên x(x+3) chia hết cho x+3 hay x^2+3x chia hết cho x+3

24 tháng 3 2018

* Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt 

Ta có a.b.c = a + b + c 

Giả sử a = b = c ta có a3 = 3a => a2 = 3.(vô lý) => a; b; c là 3 số nguyên dương phân biệt. 

* Tìm các số nguyên dương: 

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 

Kết luận: Số cần tìm là 1; 2; 3 .

5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n

5 tháng 8 2018

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1)(2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x-y+z}{16-12+15}=\frac{33}{19}\)

Sau đó bạn tự tìm x, y, z là đc

Học tốt nhé :)