K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Bài 1:

\(A=4x^2+4x-1\)

\(=4x^2+4x+1-2\)

\(=\left(2x+1\right)^2-2\ge-2\)

Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)

Bài 2:

Bình phương 2 vế 

\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)

\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)

\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)

\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)

11 tháng 1 2017

4x^2+4x-1

=4x^2+4x+1-2

=(2x+1)^2-2

=> (2x+1)^2\(\ge\)0 voi moi x

=> (2x+1)^2 \(\ge\)2

=> GTNN la 2

12 tháng 6 2019

\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)

\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)

\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)

\(\Rightarrow x\ge-3\)

12 tháng 6 2019

\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)

\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)

Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2