K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 4 2023
Để hàm số xác định thì x-m+2>=0 và x-m+2<>1
=>x>=m-2 và x<>m-1
=>m-2<=0 và \(m-1\notin\left(0;1\right)\)
=>m<=2 và (m-1<=0 hoặc m-1>=1)
=>m=2 hoặc m<=1
11 tháng 10 2019
Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi \(x^2-\left(2m-1\right)x+m^2\ne0\), \(\forall x\inℝ\)
Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm
<=> \(\Delta< 0\)
<=> \(\left(2m-1\right)^2-4m^2< 0\)
<=> \(-4m+1< 0\)
<=> m > 1/4.
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x-m+2\ge0\\\sqrt{x-m+2}-1\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge m-2\\x\ne m-1\end{matrix}\right.\)
Để hàm số xác định trên \(\left(0;1\right)\) thì:
\(\left\{{}\begin{matrix}m-2\le0\\\left[{}\begin{matrix}m-1\le0\\m-1\ge1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m\le1\end{matrix}\right.\)
b/ ĐKXĐ: \(x-m\ne0\Rightarrow x\ne m\)
Để hàm số xác định trên \(\left(-1;0\right)\) thì \(\left[{}\begin{matrix}m\le-1\\m\ge0\end{matrix}\right.\)