Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D E B C
SADE = SDEBC (gt) =>\(\frac{S_{ADE}}{S_{ABC}}=\frac{1}{2}\)
\(\Delta ADE,\Delta ABE\)có chung đường cao hạ từ E nên\(\frac{S_{ADE}}{S_{ABE}}=\frac{AD}{AB}\)
\(\Delta ABE,\Delta ABC\)có chung đường cao hạ từ B nên\(\frac{S_{ABE}}{S_{ABC}}=\frac{AE}{AC}\)
\(\Rightarrow\frac{S_{ADE}}{S_{ABE}}.\frac{S_{ABE}}{S_{ABC}}=\frac{AD}{AB}.\frac{AE}{AC}\).
\(\Delta ABC\)có DE // BC nên\(\frac{AD}{AB}=\frac{AE}{AC}\)(định lí Ta-let).Suy ra\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2\Rightarrow\frac{AD}{AB}=\frac{1}{\sqrt{2}}\)
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần cm SFGH=12SABCDSFGH=12SABCD
SFGH=SFAD−SFAG−SFDH−SAGD−SDGHSFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SFAD−12(SFAC+SFBD)−12SACD−12SDGB=SFAD−12(SFAC+SFBD)−12SACD−12SDGB
=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)
=12(SADG+SABG)=12.12(SACD+SABC)=14SABCD