\(x^4-6x+5\)

2. Tìm Min A biết <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Ta có:

D(x)=0 <=> x4-6x+5=0 <=> x4-6x= -5 <=> x3(x-6)= -5 <=> x3=-5 hoặc x-6=-5 <=> x=✔-5 hoặc x=1

Vậy x=✔-5 hoặc x=1 là nghiệm của đa thức D(x)

2.Ta có:

2x2 >_ 0

=> 2x2 +8x-5 >_ 0

=> Min A =0

Dấu" =" xảy ra khi: 2x2 + 8x-5=0

2x2 + 8x=5

2x(x+8)=5

2x=5 hoặc x+8=5

x=\(\frac{5}{2}\)

hoặc x=-3

21 tháng 4 2017

a) A(x)= \(-2x^4+x^2-x-7-2\)

B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)

b) Thay số:A(x)

\(1^2-1-2-2\cdot1^4+7=3\)

B(x)

\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)

c)\(6x^3-2x^3-7x-12-2\)

27 tháng 3 2018

ai đó làm giúp mik

cảm ơnhiu

11 tháng 4 2018

dễ thé mà ko biet lam

28 tháng 4 2018

Hai câu này là hai câu tách riêng hay gộp chung?

28 tháng 4 2018
MẤY BẠN CÓ LÒNG TỐT THÌ GIÚP MIK NHA
23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

15 tháng 4 2018

a) \(2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^3-2x=0\)

\(\Leftrightarrow x\left(x^2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

c) \(x^6+1=0\)

\(\Leftrightarrow x^6=-1\)

Ta có : \(x^6\ge0\) với mọi x

Mà : -1 < 0

=> Vô nghiệm

d) \(x^3+2x=0\)

\(\Leftrightarrow x\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)

e) \(x^5+8x^2=0\)

\(\Leftrightarrow x^2\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

f) \(x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)

g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

8 tháng 4 2017

a) Đặt A(x) = 0

Ta có:

3(x + 2) - 2x(x + 2) = 0

=> (x + 2)(3 - 2x) = 0

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)

b) Đặt B(x) = 0

Ta có:

2x + 8 - 23 = 0

=> 2x + 8 = 23

=> 2x = 15

\(\Rightarrow x=\dfrac{15}{2}\)

Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)

c) Đặt C(x) = 0

Ta có:

-x5 + 5 = 0

=> -x5 = -5

=> x5 = 5

\(\Rightarrow x=\sqrt[5]{5}\)

Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)

d) Đặt D(x) = 0

Ta có:

2x3 - 18x = 0

=> x(2x2 - 18) = 0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)

Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)

e) Đặt E(x) = 0

Ta có:

\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)

\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)

g) Đặt G(x) = 0

Ta có:

\(\dfrac{4}{25}-x^2=0\)

\(\Rightarrow x^2=\dfrac{4}{25}\)

\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)

Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)

h) Đặt H(x) = 0

Ta có:

x2 - 2x + 1 = 0

=> x2 - 2x = -1

=> x(x - 2) = -1

=> Ta có trường hợp:

+/ x = -1

Và x - 2 = 1 => x = 3

\(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1

+/ x = 1

Và x - 2 = -1 => x = 1

Vậy nghiệm của đa thức H(x) là x = 1

k) Đặt K(x) = 0

Ta có:

5x . (-2x2) . 4x . (-6x) = 0

=> 240x5 = 0

=> x5 = 0

=> x = 0

Vậy nghiệm của đa thức K(x) là x = 0

8 tháng 4 2017

Cần đáp án hay cả cách làm bạn ơi