Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Câu 3:
Đường tròn tâm \(I\left(1;2\right)\) bán kính \(R=\sqrt{2}\)
Xét đường thẳng d có pt: \(x+y-T=0\)
Để (d) và (C) có điểm chung M
\(\Leftrightarrow d\left(I;d\right)\le R\)
\(\Leftrightarrow\frac{\left|1+2-T\right|}{\sqrt{1^2+1}^2}\le\sqrt{2}\)
\(\Leftrightarrow\left|T-3\right|\le2\Rightarrow T\le5\)
\(\Rightarrow T_{max}=5\) khi (d) tiếp xúc (P)
Giải hệ \(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x+y-5=0\end{matrix}\right.\) ta được \(M\left(2;3\right)\)
Câu 1:
Gọi \(C\left(1;0\right)\Rightarrow OC=1;OA=4\)
Với M là điểm bất kì thuộc (C) \(\Rightarrow OM=R=2\)
Xét hai tam giác OCM và OMA có:
\(\widehat{MOC}\) chung
\(\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{2}\)
\(\Rightarrow\Delta OCM\sim\Delta OMA\Rightarrow\frac{AM}{CM}=\frac{OM}{OC}=2\Rightarrow AM=2CM\)
\(\Rightarrow P=MA+2MB=2CM+2MB=2\left(BM+CM\right)\ge2BC\)
\(\Rightarrow P_{min}=2BC\) khi M;B;C thẳng hàng hay M là giao điểm của đoạn thẳng BC và (C)
\(\overrightarrow{CB}=\left(2;4\right)=2\left(1;2\right)\Rightarrow\) phương trình BC có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=2t\end{matrix}\right.\)
Tọa độ M thỏa mãn:
\(\left(1+t\right)^2+\left(2t\right)^2=4\)
Bạn tự giải nốt (chỉ lấy nghiệm M nằm giữa B và C)
Câu 2: hoàn toàn tương tự câu 1, gọi \(C\left(0;1\right)\Rightarrow\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{3}\Rightarrow...\)
a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)
=>f(x) lẻ
b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)
\(=f\left(x\right)\)
=>f(x) chẵn
c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)
=>f(x) lẻ
Làm biến nghĩ nên làm cosi cho nó nhanh nhá:
Theo đề bài thì
\(3\sqrt[3]{xyz}\le x+y+z\le1\)
\(\Rightarrow xyz\le\dfrac{1}{27}\)
Ta có:
\(x+\dfrac{1}{y}=x+\dfrac{1}{9y}+\dfrac{1}{9y}+...+\dfrac{1}{9y}\ge10\sqrt[10]{\dfrac{x}{9^9y^9}}\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}y+\dfrac{1}{z}\ge10\sqrt[10]{\dfrac{y}{9^9z^9}}\left(2\right)\\z+\dfrac{1}{x}\ge10\sqrt[10]{\dfrac{z}{9^9x^9}}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) ta có:
\(\Rightarrow\left(x+\dfrac{1}{y}\right)\left(y+\dfrac{1}{z}\right)\left(z+\dfrac{1}{x}\right)\ge1000\sqrt[10]{\dfrac{1}{9^{27}\left(xyz\right)^8}}=1000\sqrt[10]{\dfrac{27^8}{9^{27}}}=\dfrac{1000}{27}\)
Điều kiện $x\geq 1$.
- Nếu x>2 thì VT>6>VP
- Nếu x<2 thì VT<6<VP
Vậy phương trình có nghiệm duy nhất x=2