\(x^4+3x^2+2\)

B=(\(x^4...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

14 tháng 3 2018

a,\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)

<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)

<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{\left(2x-1\right)\left(1-x\right)}{2\left(1-x\right)}=\dfrac{2\left(1-x\right)}{2\left(1-x\right)}-\dfrac{2\left(x^2-x-3\right)}{2\left(1-x\right)}\)

=>\(5x-2+2x-2x^2-1+x=2-2x-2x^2+2x+6\)

<=>\(-2x^2+8x-3=-2x^2+8\)

<=>\(8x=11< =>x=\dfrac{11}{8}\)

vậy..........

b,\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)

<=>\(\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)

=>\(x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-x+1\)

<=>\(3x^2-25x-6=3x^2-x+1\)

<=>\(-24x=7< =>x=\dfrac{-7}{24}\)

vậy..................

câu c tương tự nhé :)

9 tháng 12 2018

5. \(y=\dfrac{-3x}{x+2}\)

xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)

vậy D= (\(-\infty;+\infty\))\{-2}

6. \(y=\sqrt{-2x-3}\)

xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)

vậy D= (\(-\infty;\dfrac{-3}{2}\)]

7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)

xác định khi: x-4 >0 <=> x>4

vậy D= (\(4;+\infty\))

8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)

vậy D= (\(-\infty;5\))\ {3}

9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)

xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)

vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]

9 tháng 12 2018

1. \(y=\dfrac{3x-2}{x^2-4x+3}\)

xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)

vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)

2.\(y=2\sqrt{5-4x}\)

xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)

vậy D= (\(-\infty;\dfrac{5}{4}\)]

3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)

vậy D= (\(-3;\dfrac{5}{2}\)]

4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)

Vậy D= [\(-2;9\)]\{2}

a: A=(-7/4; -1/2]

\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)

\(C=\left(\dfrac{2}{3};+\infty\right)\)

b: \(\left(A\cap B\right)\cap C=\varnothing\)

\(\left(A\cup C\right)\cap\left(B\A\right)\)

\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)

\(=\left(4;\dfrac{9}{2}\right)\)

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\) 2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức: \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\) 3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\) 4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước. Tìm GTLN của...
Đọc tiếp

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)

2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:

\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)

4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.

Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)

5) Chứng minh rằng:

\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)

6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)

Tìm GTLN của b sao cho bđt sau đúng:

\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)

7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:

\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)

8) Cho a,b,c là các số thực dương. Chứng minh rằng:

\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)

5
15 tháng 12 2017

Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)

Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

Bài 4: Tương đương giống hôm nọ thôi : V

Bài 5 : Thiếu ĐK thì vứt luôn : V

Bài 7: Tương đương

( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)

Bài 8 : Đây là 1 dạng của BĐT hoán vị

12 tháng 12 2017

@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet

e: =>-3<5x-12<3

=>9<5x<15

=>9/5<x<3

f: =>3x+15>=3 hoặc 3x+15<=-3

=>3x>=-12 hoặc 3x<=-18

=>x<=-6 hoặc x>=-4

b: =>(2x-7)(x-5)<=0

=>7/2<=x<=5