x−2014|+|x−1||x−2014|+|x−1|

2) tìm G...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: \(\left(x^2+2\right)^2\ge4\)

\(\left|x-y+1\right|>=0\)

Do đó: \(-\left(x^2+2\right)^2-3\left|x-y+1\right|\le-4\)

\(\Leftrightarrow A\le2016\)

Dấu '=' xảy ra khi x=0 và y=1

26 tháng 10 2018

cái này giống trị tuyệt đối của A= trị tuyệt đói của B

a) suy ra (x-2)=0 và trị tuyệt đói của y-1/3=0

câu b tương ự 

cả 2 vế đs đều=0

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

8 tháng 5 2019

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

8 tháng 5 2019

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)

2 tháng 11 2016

a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(M=a^2-ab+b^2+ab\)

\(M=a^2+b^2\)

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).

b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)

Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).

25 tháng 12 2017

ta có \(\hept{\begin{cases}\left(2x-1\right)^{2012}\ge0\\\left(3y+2\right)^2\ge0\end{cases}}\)

+ hết vào ta có VT>=0

từ bpt => VT=0 <=> x = 1/2 và y=-2/3

25 tháng 12 2017

bạn MAi thị diệu linh ơi, cho mik hỏi bài mik làm sai chỗ nào vậy bạn

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

23 tháng 10 2018

a) (1/3)^500=(1/3)^5*100=(1/3*5)^100=(5/3)^100

(1/5)^300=(1/5)^3*100=(1/5*3)^100=(3/5)^100

Vì 5/3 >3/5

=>(5/3)^100 > (3/5)^100

Vậy (1/3)^500>(1/5)^300

Dấu "^" là dấu lũy thừa nha bạn

23 tháng 10 2018

hộ mik câu b nha