Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)
TH1: \(x+4=\frac{7}{3}\)
\(x=\frac{7}{3}-4=-\frac{5}{3}\)
TH2: \(x+4=-\frac{7}{3}\)
\(x=-\frac{7}{3}-4=-\frac{19}{3}\)
a) \(A=\left|x+\frac{2}{3}\right|\ge0\)
Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)
b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)
Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)
c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)
Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)
Min F = 9
\(\Leftrightarrow x\ge5\)
Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3
Vậy GTNN của A là 0 khi x = -2/3
b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy GTNN của B là 1/3 khi x = 0
c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0
d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9
Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)
TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)
TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)
Vậy GTNN của F là 9 khi \(-4\le x\le5\)
a) Vì : \(\left|3x+1\right|\ge0\forall x\)
\(\Rightarrow\left|3x+1\right|+3\ge3\)
Dấu " = " xảy ra khi :
\(\left|3x+1\right|=0\)
=> x = \(-\frac{1}{3}\)
Vậy MinA = 3 <=> x = \(-\frac{1}{3}\)
Mấy con sau cũng làm tương tự nha
ta có |x| luôn luôn lớn hơn hoặc bằng 0
a) Để A đạt GTNN thì |3x+1|=0=>A=3
=>x=1/3
b) Để B đạt GTNN thì |-x+4|=0
=>B=-1/3=>x=4
c)Để C đạt GTNN thì |2-3/2x|=0
=>C=-2/7=>x=4/3
d) Để D đạt GTNN thì |8-3/2x|=0
=>D=-8/9=>x=16/3
Bài 1 vì trị tuyệt đối của 1 số luôn ko âm từ đó suy ra câu a,b cả 2 số hạng đều =0
A=(2x-3)2+4/9
MinA đạt được khi và chỉ khi (2x-3)2+4/9=4/9
<=> (2x-3)2=0
<=> x=1,5
Vậy MinA=4/9 đạt được khi x=1,5
b, Ta có:
|2x-3/4||\(\ge\)0
=> |2x-3/4|-1/2 \(\ge\) -1/2
MinA=-1/2 đạt được khi và chỉ khi
|2x-3/4|=0
<=>x=3/8
Vậy MinA=-1/2 đạt được khi x=3/8
òi mấy câu còn lại chú cứ làm tương tự không hiểu ib hỏi anh
tui kc biết!
Ta có : \(2\left|x-3\right|\ge0\forall x\Rightarrow A=2\left|x-3\right|-4\ge-4\forall x\)
Dấu "=" xảy ra <=> x - 3 = 0
=> x = 3
Vậy Min A = -4 <=> x = - 3
Ta có \(\left|x+4\right|\ge0\forall x\Rightarrow-3\left|x+4\right|\le0\forall x\Rightarrow B=-3\left|x+4\right|-7\le-7\forall x\)
Dấu "=" xảy ra <=> x + 4 = 0 => x = -4
Vậy Max B = -7 <=> x = - 4
Ta có \(\left|2-x\right|\ge0\forall x\Rightarrow-\frac{1}{3}\left|2-x\right|\le0\forall x\Rightarrow C=-\frac{1}{3}\left|2-x\right|+2,5\le2,5\forall x\)
Dấu "=" xảy ra <=> 2 - x = 0
=> x = 2
Vậy Max C = 2,5 <=> x = 2