Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\dfrac{-7}{78}x\)
=> Để P > 0 thì x < 0
Để P = 0 thì x = 0
Để P < 0 thì x > 0
Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.
bài 2:
a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)
Kl: x<0
b) \(a+x< a\Leftrightarrow x< 0\)
Kl: x<0
c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)
Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Kl: x>1
Câu 4:
a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)
Kl: x>3
b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
Kl: x>2 hoặc x<1
c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)
Kl: -4<x<-1
d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)
Kl: -3<x<9
e) Đk: x khác 0
\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)
KL: x >5
f) ĐK: x khác 1
\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)
Kl: 1< x< 5/2
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
a, \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)
+,Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{1}{3}\)
+, Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow x< -\dfrac{2}{5}\)
Vậy...........
b, \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
Vì \(x+\dfrac{3}{5}< x+1\) với mọi \(x\in R\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\)
Vậy...........
c, \(\dfrac{3}{7}x-\dfrac{2}{5}x=\dfrac{-17}{35}\)
\(\Rightarrow\dfrac{1}{35}x=\dfrac{-17}{35}\)
\(\Rightarrow x=-17\)
d, \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}+\dfrac{-3}{5}x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\-\dfrac{3}{5}x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)
Vậy.........
Chúc bạn học tốt!!!
a/ \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x>\dfrac{1}{3}\)
TH2:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x< -\dfrac{2}{5}\)
Vậy \(x>\dfrac{1}{3}\) hoặc \(x< -\dfrac{2}{5}\) thì tm
b/ \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\) \(\Rightarrow-1< x< -\dfrac{3}{5}\)
TH2:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-\dfrac{3}{5}\\x< -1\end{matrix}\right.\)(vô lý)
Vậy....................
c/ \(\dfrac{3}{7}x-\dfrac{2}{5}x=-\dfrac{17}{35}\)
\(\Rightarrow\left(\dfrac{3}{7}-\dfrac{2}{5}\right)x=-\dfrac{17}{35}\)
\(\Rightarrow\dfrac{1}{35}x=-\dfrac{17}{35}\)
\(\Rightarrow x=-\dfrac{17}{35}:\dfrac{1}{35}=-17\)
Vậy.............
d/ \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}-\dfrac{3}{5}x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\\dfrac{3}{5}x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)
Vậy.....................
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)
b: \(\dfrac{x}{3-x}>-1\)
\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)
\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)
=>3-x>0
hay x<3
c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)
\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)
=>-17<=x<-5
d: \(\dfrac{7}{4x^2-1}\ge0\)
=>4x2-1>0
=>(2x-1)(2x+1)>0
=>x>1/2 hoặc x<-1/2
a: 2x(x-1/7)=0
=>x(x-1/7)=0
=>x=0 hoặc x=1/7
b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)
c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)
\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)
\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1\right\}\)
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
1)
\(\dfrac{2n+7}{n+1}=\dfrac{2\left(n+1\right)+5}{n+1}=2+\dfrac{5}{n+1}\)
Để \(A\in Z\) thì 5 \(⋮\left(n+1\right)\)
Bảng:
Vậy.....
2)
P = \(\dfrac{-7}{78}.x\)
* Khi P > 0
<=> \(\dfrac{-7}{78}.x\) > 0 => x < 0
* Khi P = 0 <=> x = 0
* Khi P < 0 <=> \(\dfrac{-7}{78}.x\) < 0 =>x > 0
TKS