Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
A + B = 4x2 - 5xy + 3y2 + 3x2 + 2xy - y2
= ( 4x2 + 3x2 ) - ( 5xy - 2xy ) + ( 3y2 - y2 )
= 7x2 - 3xy + 2y2
A - B = 4x2 - 5xy + 3y2 - ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 - 3x2 - 2xy + y2
= ( 4x2 - 3x2 ) - ( 5xy + 2xy ) + ( 3y2 + y2 )
= x2 - 7xy + 4y2
Bài 2 :
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 - (5x2 - 2xy)
M = 6x2 + 9xy - y2 - 5x2 + 2xy
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
Vậy M = x2 + 11xy - y2
b) (3xy - 4y2) - N = x2 - 7xy + 8y2
N = 3xy - 4y2 - x2 - 7xy + 8y2
N = ( 3xy - 7xy ) - ( 4y2 - 8y2 ) - x2
N = -4xy + 4y2 - x2
Vậy N = -4xy + 4y2 - x2
3, Cho đa thức
A(x)+B(x) = (3x4-\(\dfrac{3}{4}\)x3+2x2-3)+(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3+8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)
= (3x4+8x4)+(-3/4x3+1/5x3)+(-3+2/5)+2x2-9x
= 11x4 -0.55x3-2.6+2x2-9x
A(x)-B(x)=(3x4-\(\dfrac{3}{4}\)x3+2x2-3)-(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3-8x4-\(\dfrac{1}{5}\)x3+9x-\(\dfrac{2}{5}\)
= (3x4-8x4)+(-3/4x3-1/5x3)+(-3-2/5)+2x2+9x
= -5x4-0.95x3-3.4+2x2+9x
B(x)-A(x)=(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))-(3x4-\(\dfrac{3}{4}\)x3+2x2-3)
=8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)-3x4+\(\dfrac{3}{4}\)x3-2x2+3
=(8x4-3x4)+(1/5x3+3/4x3)+(2/5+3)-9x-2x2
= 5x4+0.95x3+2.6-9x-2x2
Tìm đa thức M biết :
a, M +5 (5x2 - 2xy) = 6x2 +9xy - y2
M + 5. 5x2 - 5. 2xy = 6x2 + 9xy - y2
M + 25x2 - 10xy = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 + 10xy - 25x2
M = ( 6x2 - 25x2 ) + ( 9xy + 10xy ) - y2
M = -19x2 + 19xy - y2
b, M - ( 3xy - 4y2 ) = x2 - 7xy + 8xy
M - 3xy + 4y2 = x2 - 15xy
M = x2 - 15xy - 4y2 + 3xy
M = x2 + ( 15xy + 3xy ) - 4y2
M = x2 + 18xy - 4y2
c, (25 . x2y - 13xy2+ y3 ) - M = 11x2y - 2y3
25x2y - 13xy2+ y3 - M = 11x2y - 2y3
M = 25x2y - 13xy2+ y3 - 11x2y - 2y3
M = ( 25x2y - 11x2y ) + ( y3 - 2y3 ) - 13xy2
M = 14x2y - y3 - 13xy2
d, M + (5x2 - 2xy )= 6x2 + 9xy -y2
M + 5x2 - 2xy = 6x2 + 9xy -y2
M = 6x2 + 9xy -y2 + 2xy - 5x2
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
\(M=8x^2-2xy-y^2-5x^2+2xy+3y^2=3x^2+2y^2>=0\forall x,y\)
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\) \(\forall x,y\)
mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\) (đề bài ) \(\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Rút gọn biểu thức
\(m+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
=> \(m=x^2+11xy-y^2\)
Thay x,y, vừa tìm được vào biểu thức đã được rút gọn ta tính được m
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
Vũ Minh Tuấn,Băng Băng 2k6
1)
\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M+5x^2-2xy=6x^2+9xy-y^2\)
\(M=\left(6x^2+9xy-y^2\right)-\left(5x^2+2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2-2xy\)
\(M=\left(6x^2-5x^2\right)+\left(9xy-2xy\right)-y^2\)
\(M=x^2+7xy-y^2.\)
Chúc em học tốt!