\(⋮\)n-1                

b) 7n 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

a) \(n+11⋮\left(n-1\right)\)

\(\Rightarrow\left(n+11\right)-\left(n-1\right)⋮\left(n-1\right)\)

\(\Rightarrow12⋮n-1\)

Vì n \(\in\)N nên n - 1 \(\ge\)-1

\(\Rightarrow n-1=\left\{-1;1;2;3;4;6;12\right\}\)

\(\Rightarrow n=\left\{0;2;3;4;7;13\right\}\)

26 tháng 2 2017

Bài 1:

b) Ta có:

\(16^5=2^{20}\)

\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)

\(\Rightarrow B=2^{15}.2^5+2^{15}\)

\(\Rightarrow B=2^{15}\left(2^5+1\right)\)

\(\Rightarrow B=2^{15}.33\)

\(\Rightarrow B⋮33\) (Đpcm)

c) \(C=5+5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)

\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)

\(\Rightarrow C=Q.30\)

\(\Rightarrow C⋮30\) (Đpcm)

26 tháng 2 2017

Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)

Vậy \(A⋮3\)

b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)

\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)

\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

Vậy \(B⋮33\)

c, Tương tự câu a nhưng nhóm 2 số

Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)

Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài

b, \(2n+7⋮n+1\)

Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài

c, tương tự phần b

d, Vì : \(4n+3⋮2n+6\)

Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)

\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)

\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)

\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)

Vậy \(n\in\varnothing\)

15 tháng 8 2020

a) n + 11  n - 1

b) 7n  n - 3

c) n2 + 2n + 6  n + 4

d) n2 + n +1  n + 1

15 tháng 8 2020

a) Để n + 11  \(⋮\)n - 1

=> n - 1 + 12  \(⋮\)n - 1

Vì n - 1  \(⋮\)n - 1

=> 12  \(⋮\)n - 1

=> n - 1 \(\inƯ\left(12\right)\)

=> n - 1 \(\in\left\{1;2;3;4;6;12\right\}\)

=> n \(\in\left\{2;3;4;5;7;13\right\}\)

b) Để 7n  \(⋮\)n - 3

=> 7n - 21 + 21  \(⋮\)n - 3

=> 7(n - 3) + 21  \(⋮\)n - 3

Vì 7(n - 3)  \(⋮\)n - 3

=> 21  \(⋮\)n - 3

=> n - 3 \(\inƯ\left(21\right)\)

=> n - 3 \(\in\left\{1;3;7;21\right\}\)

=> n \(\in\left\{4;6;10;24\right\}\)

c) Để n2 + 2n + 6  \(⋮\)n + 4

=> (n2 + 8n + 16) - 6n - 10  \(⋮\)n + 4

=> (n2 + 4n) + (4n + 16) - 6n - 24 + 14  \(⋮\)n + 4

=> n(n + 4) + 4(n + 4) - 6(n + 4) + 14  \(⋮\)n + 4

=> n + 4(n + 4 - 6) + 14  \(⋮\)n + 4

=> (n + 4)(n - 2) + 14  \(⋮\)n + 4

Vì (n + 4)(n + 2)  \(⋮\)n  + 4

=> 14  \(⋮\)n + 4

=> n + 4 \(\inƯ\left(14\right)\)

=> n + 4 \(\in\left\{1;2;7;14\right\}\)

=> n \(\in\left\{-3;-2;3;10\right\}\)(Vì n là số tự nhiên)

Vậy n \(\in\left\{3;10\right\}\)

d) Để n2 + n + 1  \(⋮\)n + 1

=> n2 + 2n + 1 - n - 1 + 1 \(⋮\)n + 1

=> (n2 + n) + (n + 1) - (n + 1) + 1  \(⋮\)n + 1

=> n(n + 1) + 1  \(⋮\)n + 1

Vì n(n + 1)  \(⋮\)n + 1

=> 1  \(⋮\)n + 1

=> n + 1 = 1

=> n = 0

Vậy n = 0

3 tháng 3 2020

\(a,\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)

Để \(n+5⋮n+2\) thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét bảng ( tự xét nha )

KL..

\(b,\frac{2n+3}{n-2}=\frac{2\left(n-2\right)+7}{n-2}=2+\frac{7}{n-2}\)

Giải các ý khác tương tự như trên

3 tháng 3 2020

Ta có n+5=n+2+3

Để n+5 chia hết cho n+2 thì n+2+3 chia hết cho n+2

Mà n thuộc n => n+2 thuộc N

=> n+2 thuộc Ư (5)={1;5}
Nếu n+2=1 => n=-1 (ktm)

Nếu n+1=5 => n=4(tm)

Vậy n=4 thì n+5 chia hết cho n+2

b) Ta có 2n+3=2(n-2)+7

Để 2n+3 chia hết cho n-2 thì 2(n-2)+7 chia hết cho n-1

n thuộc N => n-1 thuộc N

=> n-1 thuộc Ư (7)={1;7}

Nếu n-1=1 => n=2(tm)

Nếu n-1=7 => n=8 (tm)

27 tháng 10 2017

giải giúp mk với mk sắp đi học rồibucminh

26 tháng 2 2017

Ta có :

A= 1+3+32+33+......+3119

3A= 3+32+33+....+3119+3120

3A-A=3120-1

A=3120-1/2

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)