\(2\times16\ge2^x>4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

\(2.16\ge2^x>4\Leftrightarrow2^5\ge x>2^2\Leftrightarrow5\ge x>2\)

Vậy các số nguyên thỏa đề là: 3; 4; 5.

15 tháng 7 2016

a, \(2.16\ge2^n>4\)

\(\Leftrightarrow2.2^4\ge2^n>2^2\)

\(\Leftrightarrow2^5>2^n>2^2\)

\(\Leftrightarrow5\ge n>2\)

Vậy \(n\in\left\{3;4;5\right\}\)

b, Câu b làm tương tự nhé!

15 tháng 7 2016

a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2

suy ra n=4;3

b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243

suy ra n=5

12 tháng 8 2020

\(a)32>2^x>128\)

\(2^5>2^x>2^7\)

\(\Rightarrow x=6\)

\(b)2.16\ge2^x\ge4\)

\(2.2^4\ge2^x\ge2^2\)

\(2^5\ge2^x\ge2^2\)

\(\Rightarrow x=5;4;3;2\)

\(c)9.27\le3^x\le243\)

\(3^2.3^3\le3^x\le3^5\)

\(3^5\le3^x\le3^5\)

\(\Rightarrow x=5\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

24 tháng 7 2018

a, \(2.16\ge2^n>4\Rightarrow2^5\ge2^n>2^2\Rightarrow5\ge n>2\Rightarrow n\in\left\{3;4;5\right\}\)

b,\(9.27\le3^n\le243\Rightarrow3^5\le3^n\le3^5\Rightarrow n=5\)

xin lỗi

câu b là \(\frac{x+1}{x-4}>0\)

17 tháng 8 2020

giúp mik

17 tháng 8 2020

a, |x - 2| < 3

=> \(\hept{\begin{cases}x-2< 3\\x-2>-3\end{cases}}\)

=> \(\hept{\begin{cases}x< 5\\x>-1\end{cases}}\)

=> x\(\in\){4 ; 3 ; 2 ; 1 ; 0}

b, |x + 1| > 2

=> \(\orbr{\begin{cases}x+1\ge2\\x+1\le-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)