K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Bài 1 : Nhân vế cả ba đẳng thức ta có :

xy.yz.zx = 3.2.54

=> (x)2.(y)2.(z)2 =  324

=> (x.y.z)2= 182=(-18)2

Nếu xyz = 18  cùng với xy = 3 nên z = 6,cùng với yz = 2 thì x = 9 , cùng với zx = 54 thì y = 1/3.

Tương tự nếu xyz = -18 cùng với xy = 3 nên z = -6,cùng với yz = 2 thì x = -9 , cùng với zx = 54 thì y = -1/3.

Bài 2 :

Do 1/2x  + 3 >= 0

2,5 - 3y >= 0

=> |1/2x + 3| + |2,5-3y| = 0

Do đó x = -6 , y = 7/6

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

7 tháng 2 2021

giúp mình với nhé!

9 tháng 3 2019

a,  \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)          (2)

Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\)  (vô lí)

\(\Rightarrow x\ne0;y\ne0;z\ne0\)

Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)

Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)

\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\)   (3)

\(thay\)  \(x=2k;y=4k;z=6k\)vào (3)  ta được :

\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)

\(56k^2-28k=0\)

\(56k.\left(2k-1\right)=0\)

\(\Rightarrow k=0\)(loại)

Hoặc \(k=\frac{1}{2}\)( thỏa mãn)

Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)

Vậy \(x=1;y=2;z=3\)

Ta có :

\(|x-y|+|y-z|+|z-x|=2019\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)

Nhận xét :

\(|a|+a=0\)với \(a\le0\)

\(|a|+a=2a\)với \(a\ge0\)

\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)

mà \(2019\)lẻ

\(\Rightarrow\left(đpcm\right)\)

24 tháng 7 2015

Ta có: xy.yz.zx = \(\frac{1}{3}\times\frac{-2}{5}\times\frac{-3}{10}=\frac{1}{25}\)=> \(\left(xyz\right)^2=\frac{1}{25}\)

Mà \(\frac{1}{25}=\left(\frac{1}{5}\right)^2=\left(-\frac{1}{5}\right)^2\)

Nếu \(\left(xyz\right)^2=\left(\frac{1}{5}\right)^2\Rightarrow xyz=\frac{1}{5}\)

=> \(x=\frac{1}{5}:yz=\frac{1}{5}:\left(-\frac{2}{5}\right)=-\frac{1}{2}\)

=> \(y=\frac{1}{5}:xz=\frac{1}{5}:\left(-\frac{3}{10}\right)=-\frac{2}{3}\)

=> \(z=\frac{1}{5}:xy=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)

Nếu \(\left(xyz\right)^2=\left(-\frac{1}{5}\right)^2\Rightarrow xyz=-\frac{1}{5}\)

(Tương tự trên nha ^^ )

24 tháng 7 2015

=>\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{6}{150}=\frac{1}{25}\)

=>\(x^2.y^2.z^2=\frac{1^2}{5^2}\)

=>\(\left(x.y.z\right)^2=\left(\frac{1}{5}\right)^2\)

=>\(x.y.z=\frac{1}{5}\)

=>\(x=\frac{1}{5}:\frac{-2}{5}=\frac{-1}{2}\)

=>\(y=\frac{1}{5}:\frac{-3}{10}=\frac{-2}{3}\)

=>\(z=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)

8 tháng 2 2020

Bạn tham khảo tại đây:

Câu hỏi của Hacker Chuyên Nghiệp - Toán lớp 7 - Học toán với OnlineMath

\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)

xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5

xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5

Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)