Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt số cần tìm là A thì A + 2 chia hết cho BCNN(3, 4, 5, 6) = 60. Do đó A + 2 có dạng 60k với k nguyên dương. Hơn nữa, A chia hết cho 13 dẫn đến cần tìm k nhỏ nhất sao 60k = 13h + 2 với h nguyên dương và dễ thấy h chẵn.
Đặt h = 2x => 30k = 13x + 1 <=> 4k = 13y + 1 với y = x - 2k. Vậy y chia 4 dư 3, khi đó 13y + 1 ≥ 13.3 + 1 = 40 => k ≥ 10.
Nói cách khác giá trị nhỏ nhất của k là 10, suy ra A = 60.10 - 2 = 598.
a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)
Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)
=> a - 1 chia hết cho 2;3;4;5;6
Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)
=> a = 60 + 1 = 61
(Xem lại đề, vì chỗ chia hết cho 7??)
b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\)
Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5
<=> y = {0;5}
Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9
Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9
Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9
=> x = {0;8}
Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9
=> x = 4
Vậy x = {0;8;4} và y = {0;5}
a) Gọi số cần tìm là a
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán
b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
( 9 + x ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
( 14 + x ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4
số chia cho 3;4;5;6 đều dư 2 còn chia cho 7 thì dư 3 là122
gọi số cần tìm là a.theo bài ra ta có:a chia 3;4;5;6 dư 1=>a-1 chia hết cho 3;4;5;6=>a-1 chia hết cho 60=>a-1 thuộc {0;60;120;180;240;300;...}=>a thuộc {1;61;121;181;241;301;...}vì a chia hết cho 7=>a=301vậy a=301
Vậy số tự nhiên nhỏ nhất chia hết cho 7 là 301
b, gọi số tổng quát là n, ta có:
n - 1 chia hết cho 60
=> n - 301 chia hết cho 60
Mà n chia hết cho 7
=> n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420
=> n - 1 = 420k
=> n = 420k +1 ( k thuộc N )
Vừa tuần trước học xong K cho tớ nha
1. Vì 143 có thể phân tích thành tích các stn = cách :143=11.13=1.143
Nên ta có bảng: x+1 1 143 11 13
2.y-5 143 1 13 11
x 0 142 10 12
y 74 3 9 8
rùi cậu tự ghi kết luận nha
tick cho mình nha!