\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b+c-a}{a}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b+c-a}{a}=\frac{a+b+c}{a+b+c}=1\)

Lại có:\(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\) Tương tự : \(a+c=2b\)\(b+c=2a\)

Tự thay vô nhá Như-chan ~ Tuôi làm biếng :v M=8 ó =)) Bố thí cho tuôi một k nhoe ~

      

23 tháng 11 2016

E hèm mơn mơn có điểm rồi mơn Đình Đình

2 tháng 11 2018

DÙng tính chất dãy tỉ số bằng nhau là ra nhé 

3 tháng 11 2018

\(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\)

9 tháng 11 2021
a, (3x-1)^6 = (3x-1)^4 => (3x-1)^4.(3x-1)^2-(3x-1)^4.1=0 => (3x-1)^4.[(3x-1)^2-1]=0 => (3x-1)^4=0 hoặc (3x-1)^2-1=0 + Nếu (3x-1)^4=0 => 3x-1=0 => 3x=1 => x=1/3 + Nếu (3x-1)^2-1=0 => (3x-1)^2=1 => 3x-1=-1 hoặc 3x-1=1 => 3x=0 hoặc 3x=2 => x=0 hoặc x=2/3 Vậy x€{1/3;0;2/3}
9 tháng 11 2021

a/ \(\left(3x-1\right)^6=\left(3x-1\right)^4\Rightarrow\left(3x-1\right)=\left\{-1;0;1\right\}\)

\(\Rightarrow x=\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)

b/

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)

Tương tự

\(b+c=2a;a+c=2b\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=8\)

14 tháng 1 2018

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)

<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)

<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)

<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)

7 tháng 8 2020

Bài làm:

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3c\\a+b+c=3a\\a+b+c=3b\end{cases}}\Rightarrow a=b=c\)

Thay vào ta tính được:

\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)

Vậy B = 8

7 tháng 8 2020

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

Nếu a + b + c = 0

=> a + b = -c

=> a + c = -b

=> b + c = -a

Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-\frac{abc}{abc}=-1\)

Nếu a + b + c \(\ne\)0

=> \(\frac{1}{c}=\frac{1}{a}=\frac{1}{b}\Rightarrow a=b=c\)

Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

Vậy khi a + b + c = 0 => B = -1

khi a + b + c \(\ne\)0 => B = 8

26 tháng 10 2017

Đặt dãy tỉ số là k(k là số nguyên), ta có

a+b-c=ck

a-b+c=bk

-a+b+c=ak

Cộng lại ta có a+b+c=(a+b+c)k

=> k=1

=> a+b=2c

    b+c=2a

    c+a=2b

thay vào M suy ra M =8, mình làm hơi tắt, bạn thông cảm

26 tháng 10 2017

\(M=8\)

9 tháng 7 2016

\(\frac{b+c}{a}+1=\frac{a-c}{b}+1=\frac{a-b}{c}+1\Rightarrow\frac{b+c}{a}=\frac{a-c}{b}=\frac{a-b}{c}\)

\(\Rightarrow a=b+c\)\(b=a-c\),\(c=a-b\)\(\Rightarrow A=-1\)

16 tháng 3 2017

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)