\(^{2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz\)

\(=2x^2y+\left(4xy^2z+xy^2z\right)-10x^2yz-2xyz\)

\(=2x^2y+5xy^2z-10x^2yz-2xyz\)

b, \(x^3-5xy+3x^3+xy-x^2+\frac{1}{2}-x^2\)

\(=\left(x^3+3x^3\right)+\left(-5xy+xy\right)+\left(-x^2-x^2\right)+\frac{1}{2}\)

\(=4x^3-4xy-2x^2+\frac{1}{2}\)

c, \(3x^2y^2z^2+x^2y^2z^2=4x^2y^2z^2\)

28 tháng 4 2020

Bài 1 :

a) 2x2yz + 4xy2z - 10x2yz + xy2z - 2xyz

= ( 2 - 10 )x2yz + ( 4 + 1 )xy2z - 2xyz

= -8x2yz + 5xy2z - 2xyz

b) 3x2y2z2 + x2y2z2 = ( 3 + 1 )x2y2z2 = 4x2y2z2

Bài 2.

a) 15x4 + 7x4 + ( -20x )x2 =  ( 15 + 7 )x4 - 20xx2 = 22x4 - 20x3

Thay x = -1 vào đa thức ta có :

22 . ( -1 )4 - 20 . ( -1 )3

= 22 . 1 - 20 . ( -1 )

= 22 - ( -20 )

= 22 + 20

= 42 

Vậy giá trị của đa thức = 42 khi x = -1

b) 23x3y3 + 17x3y3 + ( -50x3 )y3 = 23x3y3 + 17x3y3 - 50x3y3 = ( 23 + 17 - 50)x3y3 = -10x3y3

Thay x = 1 ; y = -1 vào đơn thức ta có :

-10 . 13 . ( -1 )3 

= -10 . 1 . ( -1 )

= 10

10 tháng 2 2018

a) = -1x2y3z

b) = -\(\frac{1}{15}\)x3y3

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

1.

a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)

\(\dfrac{1}{3}x^6y^5z\)

Deg=12

Mấy câu kia tương tự nha cố gắng lên!

30 tháng 4 2019

a)\(-\left(\frac{-1}{2}xy^2z\right)^2\left(4x^2yz^3\right)\)

\(=-\left(\frac{1}{4}x^2y^4z^2\right)\left(4x^2yz^3\right)\)

\(=\left(\frac{-1}{4}.4\right)\left(x^2x^2\right)\left(y^4y\right)\left(z^2z^3\right)\)

\(=-x^4y^5z^5\) \(\Rightarrow\)Bậc là 14 Hệ số là -1

b)\(\left(\frac{-1}{3}x^2yz^3\right).\left(\frac{-6}{7}xyz^2\right)\)

\(=\left(\frac{-1}{3}.\frac{-6}{7}\right)\left(x^2x\right)\left(yy\right)\left(z^3z^2\right)\)

\(=\frac{2}{7}x^3y^2z^5\) \(\Rightarrow\)Bậc là 10 Hệ số là \(\frac{2}{7}\)

c)\(-3x^2.y^4.\left(\frac{-1}{3}y^4z^5x\right).\left(\frac{-1}{2}zyx^3\right)\)

\(=\left(-3.\frac{-1}{3}.\frac{-1}{3}\right)\left(x^2xx^3\right)\left(y^4y^4y\right)\left(z^5z\right)\)

\(=\frac{-1}{3}x^6y^9z^6\) \(\Rightarrow\)Bậc là 21 Hệ số là \(\frac{-1}{3}\)

d)\(\frac{3}{4}xy^3\left(\frac{-2}{3}x^2y^4\right)^2\)

\(=\frac{3}{4}xy^3\left(\frac{4}{9}x^4y^{16}\right)\)

\(=\left(\frac{3}{4}\cdot\frac{4}{9}\right)\left(xx^4\right)\left(y^3y^{16}\right)\)

\(=\frac{1}{3}x^5y^{19}\)

15 tháng 5 2017

a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz

= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz

= -3x2yz + 5xy2z - xyz

b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2

= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)

= 4x3-\(\dfrac{7}{2}\)xy-2x2

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn