\(\sqrt{49-12\sqrt{ }5}+\sqrt{49+12\sqrt{ }5}\)

2,\(\sqrt{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : \(\sqrt{49-12\sqrt{5}}+\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-4\sqrt{45}+4}+\sqrt{45+4\sqrt{45}+4}\)

\(=\sqrt{\left(\sqrt{45}-2\right)^2}+\sqrt{\left(\sqrt{45}+2\right)^2}\)

\(=\sqrt{45}-2+\sqrt{45}+2=2\sqrt{45}\)

Bài 2 : \(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20+6\sqrt{20}+9}+\sqrt{20-6\sqrt{20}+9}\)

\(=\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\)

\(=\sqrt{20}+3+\sqrt{20}-3=2\sqrt{20}\)

Bài 3 : \(\sqrt{31-12\sqrt{3}}+\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{27-4\sqrt{27}+4}+\sqrt{27+4\sqrt{27}+4}\)

\(=\sqrt{\left(\sqrt{27}-2\right)^2}+\sqrt{\left(\sqrt{27}+2\right)^2}\)

\(=\sqrt{27}-2+\sqrt{27}+2=2\sqrt{27}\)

Chúc bạn học tốt

1 tháng 8 2018

4 , Ta có :

\(\sqrt{39-12\sqrt{3}}-\sqrt{39+12\sqrt{3}}\)

\(=\sqrt{3-2.6.\sqrt{3}+6^2}-\sqrt{3+2.6.\sqrt{3}+6^2}\)

\(=\sqrt{\left(\sqrt{3}-6\right)^2}-\sqrt{\left(\sqrt{3}+6\right)^2}\)

\(=\left|\sqrt{3}-6\right|-\left|\sqrt{3}+6\right|\)

\(=6-\sqrt{3}-\sqrt{3}-6\)

\(=-2\sqrt{3}\)

10 tháng 7 2018

\(\sqrt{\left(4-\sqrt{15}\right)^2}=\left|4-\sqrt{15}\right|=4-\sqrt{15}\)

\(\Rightarrow\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}=4-\sqrt{15}+\sqrt{15}=4\)

\(\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

\(\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)

\(\Rightarrow\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}=2-\sqrt{3}+\sqrt{3}-1=1\)

Bài 3:

a) Ta có: \(4+2\sqrt{3}\)

\(=3+2\cdot\sqrt{3}\cdot1+1\)

\(=\left(\sqrt{3}+1\right)^2\)

b) Ta có: \(7+4\sqrt{3}\)

\(=4+2\cdot2\cdot\sqrt{3}+3\)

\(=\left(2+\sqrt{3}\right)^2\)

c) Ta có: \(9+4\sqrt{5}\)

\(=5+2\cdot\sqrt{5}\cdot2+4\)

\(=\left(\sqrt{5}+2\right)^2\)

d) Ta có: \(31+10\sqrt{6}\)

\(=25+2\cdot5\cdot\sqrt{6}+6\)

\(=\left(5+\sqrt{6}\right)^2\)

e) Ta có: \(13+4\sqrt{3}\)

\(=12+2\cdot2\sqrt{3}\cdot1+1\)

\(=\left(2\sqrt{3}+1\right)^2\)

g) Ta có: \(21+12\sqrt{3}\)

\(=12+2\cdot2\sqrt{3}\cdot3+9\)

\(=\left(2\sqrt{3}+3\right)^2\)

h) Ta có: \(29+12\sqrt{5}\)

\(=20+2\cdot2\sqrt{5}\cdot3+3\)

\(=\left(2\sqrt{5}+3\right)^2\)

i) Ta có: \(49+8\sqrt{3}\)

\(=48+2\cdot4\sqrt{3}\cdot1\)

\(=\left(4\sqrt{3}+1\right)^2\)

k) Sửa đề: \(14-6\sqrt{5}\)

Ta có: \(14-6\sqrt{5}\)

\(=9-2\cdot3\cdot\sqrt{5}+5\)

\(=\left(3-\sqrt{5}\right)^2\)

l) Ta có: \(23-8\sqrt{7}\)

\(=16-2\cdot4\cdot\sqrt{7}+7\)

\(=\left(4-\sqrt{7}\right)^2\)

m) Ta có: \(15-4\sqrt{11}\)

\(=11-2\cdot\sqrt{11}\cdot2+4\)

\(=\left(\sqrt{11}-2\right)^2\)

n) Sửa đề: \(28-10\sqrt{3}\)

Ta có: \(28-10\sqrt{3}\)

\(=25-2\cdot5\cdot\sqrt{3}+3\)

\(=\left(5-\sqrt{3}\right)^2\)

o) Ta có: \(17-12\sqrt{2}\)

\(=9-2\cdot3\cdot2\sqrt{2}+8\)

\(=\left(3-2\sqrt{2}\right)^2\)

p) Ta có: \(43-30\sqrt{2}\)

\(=25-2\cdot5\cdot3\sqrt{2}+18\)

\(=\left(5-3\sqrt{2}\right)^2\)

q) Ta có: \(51-10\sqrt{2}\)

\(=50-2\cdot5\sqrt{2}\cdot1\)

\(=\left(5\sqrt{2}-1\right)^2\)

r) Ta có: \(49-12\sqrt{5}\)

\(=45-2\cdot3\sqrt{5}\cdot2+4\)

\(=\left(3\sqrt{5}-2\right)^2\)

NV
16 tháng 8 2020

\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-2\right)\left(2+\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(3-4\right)\)

\(=\left(\sqrt{3}-1\right).\left(-1\right)=1-\sqrt{3}\)

b/ \(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

c/ \(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}=\sqrt{9}=3\)

d/ \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

25 tháng 7 2018

f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)

25 tháng 7 2018

mik sửa lại câu f , tí nhé :

f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

3 tháng 8 2019

\(\sqrt{5-\sqrt{21}}=\sqrt{\frac{1}{2}}.\sqrt{10-2\sqrt{21}}=\sqrt{\frac{1}{2}}.\sqrt{3-2\sqrt{3}\sqrt{7}+7}=\sqrt{\frac{1}{2}}\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{\frac{1}{2}}.\sqrt{7}-\sqrt{\frac{1}{2}}.\sqrt{3}=\sqrt{3,5}-\sqrt{1,5}\)

\(\sqrt{7+3\sqrt{5}}=\sqrt{\frac{1}{2}\left(14+2.3\sqrt{5}\right)}=\sqrt{\frac{1}{2}\left(5+2.3\sqrt{5}+3^2\right)}=\sqrt{\frac{1}{2}\left(3+\sqrt{5}\right)^2}=\sqrt{\frac{1}{2}}\left(3+\sqrt{5}\right)=\sqrt{4,5}+\sqrt{2,5}\)

\(\sqrt{49+5\sqrt{96}}=\sqrt{49+2.2.5\sqrt{6}}=\sqrt{2^2.6+2.2.5\sqrt{6}+5^2}=\sqrt{\left(5+2\sqrt{6}\right)^2}=5+2\sqrt{6}\)

3 tháng 8 2019

\(\sqrt{5-\sqrt{21}}=\frac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7\cdot3}+3}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{2}}\)

\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+6\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2\cdot3\sqrt{5}+4}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)

\(\sqrt{49+5\sqrt{96}}=\sqrt{49+5\sqrt{4\cdot24}}=\sqrt{25+2\cdot5\sqrt{24}+24}=\sqrt{\left(5+\sqrt{24}\right)^2}=5+\sqrt{24}\)

\(\sqrt{51-7\sqrt{8}}=\sqrt{51-7\sqrt{2^2\cdot2}}=\sqrt{49-2\cdot7\sqrt{2}+2}=\sqrt{\left(7+\sqrt{2}\right)^2}=7+\sqrt{2}\)

\(\sqrt{28+5\sqrt{12}}=\sqrt{28+5\sqrt{2^2\cdot3}}=\sqrt{25+2\cdot5\sqrt{3}+3}=\sqrt{\left(5+\sqrt{3}\right)^2}=5+\sqrt{3}\)

\(\sqrt{12-3\sqrt{12}}=\sqrt{12-3\sqrt{2^2\cdot3}}=\sqrt{9-2\cdot3\sqrt{3}+3}=\sqrt{\left(3+\sqrt{3}\right)^2}=3+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+1\right)\)

Chúc bạn học tốt nhaok.

11 tháng 7 2018

cho cách làm dạng bài này luôn. Chỗ nào chưa hiểu thì nói tớ sẽ giải thích thêm (cần góp ý để hoàn thiện thêm phần hướng dẫn đó mà. Cảm ơn cậu).

Phương Nam Phim (à quên, Từ Hạ) hân hạnh giới thiệu bộ phim...

7 tháng 7 2017

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

19 tháng 8 2017

Hà Nam răng từ\(\sqrt{4}.....\)sang đc 2+ căn 3 đó ???