Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)
1.
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)
b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)
c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)
2.
a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}
b) ĐK:x\(\ge-3\)
\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)
Vậy S={-2}
3.
a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)
Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)
Vậy GTNN của A=\(\dfrac{3}{4}\)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(
Bài 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
=>căn a-2>0
=>a>4
Bài 1)
ĐK: \(x\geq 0; x\neq -4\)
Ta có:
\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)
\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)
\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)
\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)
\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)
Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)
PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.
Bài 2 : Tọa độ điểm B ?
Bài 3:
Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)
\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)
Khi đó:
\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)
\(\Rightarrow x_1=10-2m\)
\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)
Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)
\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)
\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)
\(\Leftrightarrow 9m^2-72m+159=0\)
\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)
Vậy không tồn tại $m$ thỏa mãn điều kiện trên.
Bài 1
a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a
b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3
Bài 2
a) √2x-3 = 7
⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26
c) √16x - √9x = 2
⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4
Bài 3
a) √(2-√5)2 = l 2-√5 l = √5-2
b) (a - 3)2 + (a - 9)
= a2 - 6a + 9 + a - 9 = a2 - 5a
c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\dfrac{-3\sqrt{x}+9}{x-9}\)
HD nha bn^^
\(x\sqrt{x}-1=\sqrt{x^3}-1\) (Hằng đẳng thức)
Mấu chốt là ở chỗ này. Bn khai triển sau rút gọn là đc