Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
\(1,x^3-7x+6\)
\(=x^3+3x^2-3x^2-9x+2x+6\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+2\right)\)
\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
\(2,x^3-9x^2+6x+16\)
\(=x^3+x^2-10x^2-10x+16x+16\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)
\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)
mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
a) Vì \(x-y=1\)
\(\Rightarrow\left(x-y\right)^3=1\)
\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)
\(\Leftrightarrow x^3-y^3-3xy=1\)
b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
\(=4\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)
\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)
\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)
=1/5-1=-4/5
c \(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)
d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)
\(=20x^3-30x^2+15x+4\)
\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)
\(\left\{{}\begin{matrix}x+y=13\\xy=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=x^2+2xy+y^2=169\\4xy=88\end{matrix}\right.\Leftrightarrow x^2+2xy+y^2-4xy=81=\left(\pm9\right)^2\) \(+,x-y=9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=2\end{matrix}\right.\)
\(+,x-y=-9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=-9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=11\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=11^2+2^2=125;x^3+y^3=11^3+2^3=1339;x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\pm\left(11^2+2^2\right)\left(11^2-2^2\right)=\pm14625;x^7+y^7=11^7+2^7=19487299;x-y=\pm\left(11-2\right)=\pm9\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+\left(a+b+c\right)abc=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+0=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{1}{2};\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1^2=1\)
\(\Rightarrow\left(a^4+b^4+c^4\right)+\frac{1}{2}=1\Rightarrow\left(a^4+b^4+c^4\right)=\frac{1}{2}\Leftrightarrow A=\frac{1}{2}\)
a/ x3 + x2 z + y2 z - xyz + y3
= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)
= (x2 - xy + y2)(x + y + z)