\(7x^2-14+7\)

b)2\(\left(x+y...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )

b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )

c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )

d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy

                                                = ( a2xy + abx2 ) + ( aby2 + b2xy )

                                                = ax( ay + bx ) + by( ay + bx )

                                                = ( ay + bx )( ax + by )

Bài 2:

a)A= \(6x^2\)\(-11x+3\)

<=>A=\(6x^2\)\(-2x-9x+3\)

<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)

=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)

<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)

=>A=(3x-1)(2x+3)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

23 tháng 9 2016

a) x3 + (a+b+c)x2+ (ab+ac+bc)x +abc

= x3 +ax2+bx2+cx2+abx+acx+bcx+abc

=x3+cx2+abx+abc+ax2+acx+bx2+bcx

=x2 (x+c) + ab (x+c) +ax (x+c) +bx (x+c)

= (x+c) (x2+ab+ax+bx)

= (x+c) { x(x+b)+a(x+b)}

=(x+c) (x+b) (x+a)

17 tháng 8 2016

c)x12+x6+1

Lần lượt thêm và bớt x9; x3;x6 ta đc:

=x12+x9-x6-x9-x6-x3+x6+x3+1

=x6(x6+x3+1)-x3(x6+x3+1)+(x6+x3+1)

=(x6-x3+1)(x6+x3+1)

17 tháng 8 2016

b)x4-7x3-14x2-7x+1

=x4-3x3+x2-4x3+12x2-4x+x2-3x+1

=x2(x2-3x+1)-4x(x2-3x+1)+(x2-3x+1)

=(x2-4x+1)(x2-3x+1)

 

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)