Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^4+2013x^2+2012x+2013\)
\(=x^4+2013x^2-x+2013x+2013\)
\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)
\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)
1. 4-32x3
= 4.(1-8x3)
= 4.[13-(2x)3 ]
= 4.(1-2x).(1+2x+4x2)
2. b. \(\left(\frac{x}{xy-y^2}-\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left[\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(x-y\right)}\right]:\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left[\frac{x.x}{y\left(x-y\right).x}+\frac{\left(2x-y\right).y}{x\left(x-y\right).y}\right]:\left(\frac{x+y}{xy}\right)\)
\(=\left[\frac{x^2+2xy-y^2}{xy\left(x-y\right)}\right]:\left(\frac{x+y}{xy}\right)\)
\(=\left[\frac{-\left(x-y\right)^2}{xy\left(x-y\right)}\right].\frac{xy}{x+y}\)
\(=\frac{-\left(x-y\right)}{xy}.\frac{xy}{x+y}\)
\(=\frac{y-x}{x+y}\)
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm
Bạn thử giải câu này xem
NHỚ ĐỌC KỸ ĐỀ ĐẤY
https://olm.vn/hoi-dap/detail/211451950700.html?pos=476647086293
\(x\left(x+2\right)\left(x^2+2x+2\right)+1\)
\(=\left(x^2+2x\right)\left(x^2+2x+2\right)+1\)
Đặt: \(x^2+2x=t\)
khi đó: \(\left(x^2+2x\right)\left(x^2+2x+2\right)+1=t\left(t+2\right)+1=\left(t+1\right)^2\)
\(=\left(x^2+2x+1\right)^2=\left(x+1\right)^4\)
b) Xét: \(\left(n+1\right)^2-n^2=\left(n+1+n\right)\left(n+1-n\right)=2n+1\)
Khi đó:
\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2.\left(n+1\right)^2}\)
\(A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(A=1-\frac{1}{\left(n+1\right)^2}\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
a, P là snt > 3 => \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp ( p-1 >= 4 )
nên sẽ tồn tại 1 bội của 4 giả sử số đó là p+1
S uy ra \(p+1⋮4;p-1⋮2=>\left(p+1\right)\left(p-1\right)⋮8\)
Do P là snt lẻ > 3 => P sẽ có dạng 3k+1 hoặc 3k+2
rồi thay vồ => đpcm
\(x^2+xy-2019x-2020y-2021=x^2+xy+x-\left(2020x+2020y+2020\right)-1\)
\(=x\left(x+y+1\right)-2020\left(x+y+1\right)-1=\left(x-2020\right)\left(x+y+1\right)-1\)
làm tắt xíu :))
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)
\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)
f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\left(x^2-2\right)\)
\(=x^2+1-x^2+2\)
\(=3\)
\(1)\)
\(a,2x^3-6x^2=2x^2.\left(x-3\right)\)
\(b,6x-6y-x^2+xy=6.\left(x-y\right)-x.\left(x-y\right)=\left(x-y\right).\left(6-x\right)\)
\(2)\)
\(a,ĐKXĐ:x\ne0;x\ne1\)
\(b,B=\left(\frac{2}{x\left(1-x\right)}-\frac{1}{1-x}\right):\frac{2-x}{1-2x+x^2}\)
\(B=\left(\frac{2}{x\left(1-x\right)}-\frac{x}{x\left(1-x\right)}\right):\frac{2-x}{\left(1-x\right)^2}\)
\(B=\frac{2-x}{x\left(1-x\right)}.\frac{\left(1-x\right)^2}{2-x}\)
\(B=\frac{1-x}{x}\)
\(c,\)Thay x=-2014 vào B ta có :
\(B=\frac{-2014-1}{-2014}=\frac{2015}{2014}\)