Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)
Đặt: \(x^2-7x+11=t\)
\(\Rightarrow\hept{\begin{cases}x^2-7x+10=t-1\\x^2-7x+12=t+1\end{cases}}\)
\(\Rightarrow\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)
\(=\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)
Vậy: \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left(x^2-7x+11\right)^2\)
viết lại cho đối xưng thì thế này
\(\left(-x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
a. x^3(x^2+1)^2-49x=x[x^2(x^2+1)^2-49) = x{[x(x+1)]^2-7^2}=x[(x^2+x)^2-7^2]= x(x^2+x-7)(x^2+x+7)
b. (x^2-9)^2+12(x-3)^2= (x-3)^2.(x+3)^2+ 12(x-3)^2=(x-3)^2.(x^2+6x+9)+12(x-3)^2 =(x-3)^2.(x^2+6x+9+12) = (x-3)^2.(x^2+6x+21)
c. (x-z)(x+z)-y(2x-y)= x^2-z^2-2xy+y^2 = (x^2-2xy+y^2)-z^2 =(x-y)^2-z^2=(x-y-z)(x-y+z)
Mình hơi nhác sử dụng kí tự bạn thông cảm nha
1) x3 + y3 + z3 - 3xyz
= ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
= [ ( x + y )3 + z3 ) - [ 3xy( x + y ) + 3xyz ]
= ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy( x + y + z )
= ( x + y + z )( x2 + y2 + z2 + 2xy - xz - yz - 3xy )
= ( x + y + z )( x2 + y2 + z2 - xy - yz - xz )
2) Tạm thời đang bí chưa làm được :(
3) ( x2 - 2x )2( x2 - 2x - 1 ) - 6 ( đề có vấn đề -- )
4) x4 - 7x3 + 14x2 - 7x + 1
= x4 - 3x2 - 4x2 + x2 + 12x2 + x2 - 4x - 3x + 1
= ( x4 - 3x2 + x2 ) - ( 4x3 - 12x2 + 4x ) + ( x2 - 3x + 1 )
= x2( x2 - 3x + 1 ) - 4x( x2 - 3x + 1 ) + ( x2 - 3x + 1 )
= ( x2 - 3x + 1 )( x2 - 4x + 1 )
\(1.\left(x^2-x+1\right)\left(x^2-x+2\right)-12\)
Đặt : \(x^2-x+1=t\) , ta có :
\(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay : \(x^2-x+1=t\) vào biểu thức trên , ta có :
\(\left(x^2-x+1-3\right)\left(x^2-x+1+4\right)=\left(x^2-x-2\right)\left(x^2-x+5\right)\)
\(2.\) Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
x2-x-1 mà