Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
\(3x^2-2x-1\)
\(=3x^2-3x+x-1\)
\(=3x.\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right).\left(3x+1\right)\)
\(9x^2-4y^2-4xy-x^2\)
\(=\left(3x\right)^2-\left(2y+x\right)^2\)
\(=\left(2x-2y\right)\left(4x+2y\right)\)
\(=4.\left(x-y\right)\left(2x+y\right)\)
1:
a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
2
\(-2x^2-4x+6=0\)
\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
1,
a) x( x2 + 2x +1) = x(x+1)2
b)25 - (x-2y)2 = (5-x+2y)(5+x-2y)
2,
(x-1)(x+3)=0
<=>x=1 hoặc x=-3
a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
b) sửa đề nhé!
\(6x-9-x^2=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
BÀI 1.
a. 2.( x+5 ) - x2 -5x = 2. (x+5) - x .(x +5 )
=( x+5 ). (2 - x)
b. y2 - 6y +9 +z2 =( y2 -6y +9 )+ z2
=(y - 3)2 +z2
c. a3 - a2x- ay +xy =( a3 - a2x) - (ay - xy )
=a2 (a-x) - y (a -x)
=(a - x) . (a2 - y)
bài 2
a. x2 - 6x =0
x( x -6 ) =0
Suy ra : x= 0 hoặc x- 6 =0
1) x =0
2) x -6 =0 suy ra x=6
vậy x =0 ; x= 6
b. x3 -2x2 +x =0
x . ( x2 - 2x +1 ) =0
x . ( x -1 )2 =0
suy ra : x = 0 hoặc (x - 1)2 =0
1) x = 0
2) (x - 1)2 = 0 suy ra x -1 = 0
suy ra : x= 1
vậy x = 0 ; x = 1
Tick cho mk nhé!!!!!!!
1a/ x3+x2+x+1=0
x2(x+1).(x+1)=0
=> x2(x+1)=0 x =1
hoặc =>[
x+1=0 x=-1
b/(x+2)2=x+2
x2+2.x.2+22 =x+2
x+x+4x+4=x+2
6x+4=x+2
....
c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0
x2-12 + (6x2+2x)2=0
=> x2-1 = 0 x=1
hoặc => [
(6x2+2x)2=0 x= 0
1.
a) \(xy+y^2=y\left(x+y\right)\)
b) \(x^2+4xy+4y^2-25=\left(x+2y\right)^2-25=\left(x+2y-5\right)\left(x+2y+5\right)\)
c) \(x^2-y^2+2x+1=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
tick cho mk nha
2.
a) \(x^2+x-6=0\)
\(\Delta=1^2-4.1.\left(-6\right)=25\)
\(x_1=-3;x_2=2\)
b) \(x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow x^2-7x+10=0\)
\(\Delta\left(-7\right)^2-4.1.10=9\)
\(x_1=2;x_2=5\)
c) \(\left(x+2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)=9\)
\(\Leftrightarrow x^2+4x+4+x^2+6x+9-2x^2+2=9\)
\(\Leftrightarrow x^2+4x+4+x^2+6x-2x^2+2=0\)
\(\Leftrightarrow10x+6=0\)
\(\Leftrightarrow10x=-6\)
\(\Rightarrow x=-\dfrac{3}{5}\)
tick cho mk nha