Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4+2x^3-9x^2-10x-24\)
\(=x^4+4x^3+x^2-2x^3-8x^2-2x-2x^2-8x-2\)
\(=x^2.\left(x^2+4x+1\right)-2x.\left(x^2+4x+1\right)-2.\left(x^2+4x+1\right)\)
\(=\left(x^2+4x+1\right)\left(x^2-2x-2\right)\)
2) \(6x^4+7x^3+5x^2-x-2\)
\(=6x^4-3x^3+10x^3-5x^2+10x^2-5x+4x-2\)
\(=3x^3\left(2x-1\right)+5x^2\left(2x-1\right)+5x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(3x^3+5x^2+5x+2\right)\)
\(=\left(2x-1\right)\left(3x^2+2x^2+3x^2+2x+3x+2\right)\)
\(=\left(2x-1\right)\left(3x+2\right)\left(x^2+x+1\right)\)
3) \(2x^4+3x^3+2x^2-1\)
\(=2x^4+2x^3+x^3+x^2+x^2+x-x-1\)
\(=\left(x+1\right)\left(2x^3+x^2+x-1\right)\)
\(=\left(x+1\right)\left(2x-1\right)\left(x^2+x+1\right)\)
4) \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=\left(x-2\right)\left(x^2+x+1\right)\)
A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 2 ≤ 2
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
B = -x2 + 10x - 24 = -( x2 - 10x + 25 ) + 1 = -( x - 5 )2 + 1
-( x - 5 )2 ≤ 0 ∀ x => -( x - 5 )2 + 1 ≤ 1
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MaxB = 1 <=> x = 5
C = -x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4
-( x + 1/2 )2 ≤ 0 ∀ x => -( x + 1/2 )2 - 3/4 ≤ -3/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxC = -3/4 <=> x = -1/2
D = -3x2 - 3x - 3 = -3( x2 + x + 1/4 ) - 9/4 = -3( x + 1/2 )2 - 9/4
-3( x + 1/2 )2 ≤ 0 ∀ x => -3( x + 1/2 )2 - 9/4 ≤ -9/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxD = -9/4 <=> x = -1/2
b) \(\left(x-7\right)\left(x-4\right)\left(x-5\right)\left(x-2\right)=72\)
\(\Leftrightarrow\) \(\left[\left(x-7\right)\left(x-2\right)\right].\left[\left(x-4\right)\left(x-5\right)\right]\) \(=72\)
\(\Leftrightarrow\) (\(x^2-9x+14\))(\(x^2-9x+20\)) \(=72\) (1)
Đặt \(x^2-9x+17=y\) .Khi đó (1) trở thành:
\(\left(y-3\right)\left(y+3\right)=72\)
\(\Leftrightarrow\) \(y^2-9=72\)
\(\Leftrightarrow\) \(y^2=81\) \(\Leftrightarrow\) \(y\) ∈ \(\left\{9;-9\right\}\)
+)Nếu \(y=9\) \(\Rightarrow\) \(x^2-9x+17=9\)
\(\Leftrightarrow\) \(x^2-9x-8=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\frac{9+\sqrt{113}}{2}\\x=\frac{9-\sqrt{113}}{2}\end{matrix}\right.\)
+)Nếu \(y=-9\) \(\Rightarrow x^2-9x+17=-9\)
\(\Leftrightarrow\) \(x^2-9x+26=0\)
\(\Leftrightarrow\)( \(x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2\)) \(+\frac{23}{4}\)\(=0\)
\(\Leftrightarrow\) \(\left(x-\frac{9}{2}\right)^2\)\(=-\frac{23}{4}\)( Vô lí,vì \(\left(x-\frac{9}{2}\right)^2\) ≥0)
Vậy phương trình có tập nghiệm S=\(\left\{\left(\frac{9+\sqrt{113}}{2}\right);\left(\frac{9-\sqrt{113}}{2}\right)\right\}\)
a) x2 - 10x + 24
= x2 - 4x - 6x + 24
= x(x - 4) - 6(x - 4)
= (x - 4)(x - 6)
b) x2 - 13x + 36
= x2 - 4x - 9x + 36
= x(x - 4) - 9(x - 4)
= (x - 4)(x - 9)
a.
\(x^2-10x+24\)
\(=x^2-2\cdot x\cdot5+25-1\)
\(=\left(x-5\right)^2-1^2=\left(x-6\right)\left(x-4\right)\)
b.
\(x^2-13x+36\)
\(=x^2-2\cdot x\cdot\dfrac{13}{2}+\dfrac{169}{4}-\dfrac{25}{4}\)
\(=\left(x-\dfrac{13}{2}\right)^2-\left(\dfrac{5}{4}\right)^2=\left(x-\dfrac{21}{4}\right)\left(x-\dfrac{31}{4}\right)\)
c.
\(x^2-5x-24\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{121}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2-\left(\dfrac{11}{2}\right)^2=\left(x-8\right)\left(x+3\right)\)
d.
\(x^3+3x^2-3x-1\)
\(=x^3-3x^2+3x-1+6x^2-6x\)
\(=\left(x-1\right)^3-6x\left(x-1\right)=\left(x-1\right)\left[\left(x-1\right)^2-6x\right]=\left(x-1\right)\left(x^2-8x+1\right)\)
\(x^3+3x^2-10x-24=x^3-3x^2+6x^2-18x+8x-24\)\(=x^2\left(x-3\right)+6x\left(x-3\right)+8\left(x-3\right)=\left(x-3\right)\left(x^2+6x+8\right)\)
\(=\left(x-3\right)\left(x^2+2x+4x+8\right)=\left(x-3\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=\left(x-3\right)\left(x+2\right)\left(x+4\right)\)