Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)
\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\)
\(\Delta=25-4\left(-1\right)=29>0\)
\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)
b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)
c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)
Lời giải:
PT hoành độ giao điểm của $(P)$ và $(d)$ là:
\(\frac{1}{2}x^2-(mx-\frac{1}{2}m^2+m+1)=0\)
\(\Leftrightarrow x^2-2mx+(m^2-2m-2)=0\)
Để hai đths cắt nhau tại hai điểm phân biệt thì pt phải có hai nghiệm phân biệt.
\(\Leftrightarrow \Delta'=m^2-(m^2-2m-2)>0\)
\(\Leftrightarrow m>-1\)
Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2m-2\end{matrix}\right.\)
Khi đó: \(2=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)
\(\Leftrightarrow 2=\sqrt{(x_1+x_2)^2-4x_1x_2}\)
\(\Leftrightarrow 2=\sqrt{4m^2-4(m^2-2m-2)}\)
\(\Leftrightarrow 2=\sqrt{8m+8}\)
\(\Rightarrow 4=8m+8\Rightarrow m=-\frac{1}{2}\) (thỏa mãn)
Vậy.....