Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phải là M<2/3 mới giải đc
\(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)
\(=\frac{1}{\left(3+1\right).3:2}+\frac{1}{\left(4+1\right).4:2}+...+\frac{1}{\left(59+1\right).59:2}\)
\(=\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1770}\)
\(=\frac{2}{12}+\frac{2}{20}+...+\frac{2}{3540}\)
\(=2\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{595.60}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{60}\right)\)
\(=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)
P=\(\left(1-\dfrac{1}{111}\right)\left(1-\dfrac{2}{111}\right)\times...\times\left(1-\dfrac{111}{111}\right)\times...\times\left(1-\dfrac{2009}{111}\right)\)
P=\(\left(1-\dfrac{1}{111}\right)\left(1-\dfrac{2}{111}\right)\times...\times0\times...\times\left(1-\dfrac{2009}{111}\right)\)
P=0
\(\frac{1}{M}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}+...+\frac{1}{1+2+3+...+59}\)
\(\frac{1}{M}=\frac{1}{3\left(1+3\right):2}+\frac{1}{4\left(1+4\right):2}+\frac{1}{5\left(1+5\right):2}+...+\frac{1}{59\left(1+59\right):2}\)
\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{59.60}\)
\(\frac{1}{M}=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(\frac{1}{M}=2\left(\frac{1}{3}-\frac{1}{60}\right)\)
\(\frac{1}{M}=\frac{1}{2}.\frac{19}{60}\)
\(\frac{1}{M}=\frac{19}{120}\)
\(M=\frac{120}{19}>\frac{2}{3}\left(đpcm\right)\)
Ta có \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\)
= \(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\dfrac{1}{3}-\dfrac{1}{60}=\dfrac{19}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Vậy M < \(\dfrac{2}{3}\)