Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
Có: \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\left(x+3\right).\)
Ngược lại:
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)là scp
Bài 3 a)
\(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2-3x+2x-6\right)\)
\(=\left(x+1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
Còn câu b) mình làm không ra.
Bài 1:xy - 3x + 2y - 1 = 0
<=> x(y - 3) + 2(y - 3) + 5 = 0
<=> (x + 2)(y - 3) = -5
<=> x + 2 ∈ Ư(-5) = {-1;1;-5;5}
+) x + 2 = -1 ; => y - 3 = 5
=> x = -3; y = 8
+) x + 2 = 1; => y - 3 = -5
=> x = -1; y = -2
+) x + 2 = -5; => y - 3 = 1
=> x = -7; y = 4
+) x + 2 = 5 ;=> y - 3 = -1
=> x = 3; y = 2
Vậy: (x;y) ∈ {(-3;8);(-1;-2);(-7;4);(3;2)}
Chúc Bạn Học Tốt !!!