K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a) Do \(1010\le n\le2016\)nên:

                \(\sqrt{20203+21\times1010}\le a_n\le20203+21\times2016\)\(\Leftrightarrow204\le a_n\le250\)

b) Ta có:

\(a^2_n=20203+21n=\left(21\times962+1\right)+21n\)

\(\Leftrightarrow a^2_n-1=21\times\left(962+n\right)=3\times7\times\left(962+n\right)\)

\(\Rightarrow\left(a_n-1\right)\left(a_n+1\right)⋮7\Leftrightarrow\hept{\begin{cases}\left(a_n-1\right)⋮7\\\left(a_n+1\right)⋮7\end{cases}}\)

Hay \(a_n+1=7k\)hoặc \(a_n-1=7k\)\(\Rightarrow a_n=7k-1\)hoặc \(a_n=7k+1\left(k\in N\right)\)

\(\Rightarrow dpcm\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Nếu $p_1,p_2,p_3,p_4$ là 4 số nguyên tố khác nhau thì loại TH $\overline{a_1a_2a_3}=121; 169$.

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Lời giải:

Theo đề bài ta có:
\(A=\overline{a_1a_2a_3}.10^6+\overline{b_1b_2b_3}.10^3+\overline{a_1a_2a_3}=\overline{a_1a_2a_3}.10^6+2.\overline{a_1a_2a_3}.10^3+\overline{a_1a_2a_3}\)

\(=\overline{a_1a_2a_3}(10^6+2.10^3+1)=\overline{a_1a_2a_3}(10^3+1)^2\)

\(=\overline{a_1a_2a_3}[(10+1)(10^2-10+1)]^2=\overline{a_1a_2a_3}.11^2.91^2=\overline{a_1a_2a_3}.11^2.7^2.13^2\)

Theo dạng của $A$ ta thấy $\overline{a_1a_2a_3}$ là bình phương của 1 số nguyên tố.

Đặt $\overline{a_1a_2a_3}=p^2$. Dễ thấy $a_1<5$ vì nếu $a_1\geq 5$ thì $\overline{b_1b_2b_3}=2\overline{a_1a_2a_3}\geq 1000$ (vô lý). Khi đó:

$100\leq \overline{a_1a_2a_3}=p^2\leq 499$

$\Rightarrow 10\leq p\leq 22$. Mà $p$ nguyên tố nên $p=11; 13;17;19$

Khi đó thay vào tìm được $\overline{a_1a_2a_3}=121; 169; 289; 361$

$\Rightarrow \overline{b_1b_2b_3}=242; 338; 578; 722$ (tương ứng)

Khi đó bạn ghép lại để viết ra số A thôi.

14 tháng 8 2022

chịu

3 tháng 12 2016

Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)

Thì bài toán thành

x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)

Chứng minh x2 + y2 + z= 1

Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

Từ (1) ta có

(x + y + z)2 = 1

<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0

<=> x2 + y2 + z2 = 1

3 tháng 12 2016

bằng 1 đó chắc chắn lun