\(\frac{\frac{3}{3}-\frac{3}{5}+\frac{3}{11}+\frac{3}{13}}{\frac{7}{3}-\frac{7}{5}+\frac{5}{11...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

1, \(=\frac{3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}+\frac{1}{13}\right)}{7\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{7}\)

2, a, \(\Leftrightarrow\left(3x-2\right)^{10}-\left(3x-2\right)^6=0\)

\(\Leftrightarrow\left(3x-2\right)^6\left[\left(3x-2\right)^4-1\right]=0\)

TH1: (3x-2)^6=0 <=> 3x-2=0 <=> x=2/3

TH2: (3x-2)^4-1=0 <=> (3x-2)^4=1

<=> 3x-2 = 1 hoặc 3x-2=-1

<=>x=1 hoặc x=-1/3

Vậy x=2/3 hoặc x=1 hoặc x=-1/3

b, \(\Leftrightarrow\orbr{\begin{cases}2x^2-13=-5\\2x^2-13=5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=8\\2x^2=18\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm2\\x=\pm3\end{cases}}}\)

1 tháng 3 2020

3,a, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

Để \(A\in Z\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow21⋮n-4\Leftrightarrow n-4\inƯ\left(21\right)\)

Ta có bảng

n-41-13-37-721-21
n537111-325-17

Vậy..

b, tương tự a

6 tháng 7 2019

\(a,-\frac{3}{2}-2x+\frac{3}{4}=-2\)

=> \(-\frac{3}{2}+\left(-2x\right)+\frac{3}{4}=-2\)

=> \(\left(-\frac{3}{2}+\frac{3}{4}\right)+\left(-2x\right)=-2\)

=> \(-\frac{3}{4}+\left(-2x\right)=-2\)

=> \(-2x=-2-\left(-\frac{3}{4}\right)=-\frac{5}{4}\)

=> \(x=-\frac{5}{4}:\left(-2\right)=\frac{5}{8}\)

Vậy \(x\in\left\{\frac{5}{8}\right\}\)

\(b,\left(\frac{-2}{3}x-\frac{3}{4}\right)\left(\frac{3}{-2}-\frac{10}{4}\right)=\frac{2}{5}\)

=> \(\left(-\frac{2}{3}x-\frac{3}{4}\right).\left(-4\right)=\frac{2}{5}\)

=> \(-\frac{2}{3}x-\frac{3}{4}=\frac{2}{5}:\left(-4\right)=-\frac{1}{10}\)

=> \(-\frac{2}{3}x=-\frac{1}{10}+\frac{3}{4}=\frac{13}{20}\)

=> \(x=\frac{13}{20}:\left(-\frac{2}{3}\right)=-\frac{39}{40}\)

Vậy \(x\in\left\{-\frac{39}{40}\right\}\)

\(c,\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)

=> \(\frac{x}{2}-\frac{3x}{5}+\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)

=> \(10.\frac{x}{2}-10.\frac{3x}{5}+10.\frac{13}{5}=10.\frac{-7}{5}-10.\frac{7}{10}x\)

( chiệt tiêu )

=> \(5x-6x+26=-14-7x\)

=> \(-x+26=-14-7x\)

=> \(-x+7x=-14-26\)

=> \(6x=-40\)

=> \(x=-40:6=\frac{20}{3}\)

Vậy \(x\in\left\{\frac{20}{3}\right\}\)

\(d,\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)

=> \(6.\frac{2x-3}{3}+6.\frac{-3}{2}=6.\frac{5-3x}{6}-6.\frac{1}{3}\)

( chiệt tiêu )

=> \(2\left(2x-3\right)-9=5-3x-2\)

=> \(4x-6-9=3-3x\)

=> \(4x-15=3-3x\)

=> \(4x+3x=3+15\)

=> \(7x=18\)

=> \(x=18:7=\frac{18}{7}\)

Vậy \(x\in\left\{\frac{18}{7}\right\}\)

\(e,\frac{2}{3x}-\frac{3}{12}=\frac{4}{x}-\left(\frac{7}{x}.2\right)\)

ĐKXĐ : \(x\ne0\)

=> \(\frac{2}{3x}-\frac{1}{4}=\frac{4}{x}-\frac{14}{x}\)

=> \(\frac{2}{3x}-\frac{4}{x}+\frac{14}{x}=\frac{1}{4}\)

=> \(\frac{2}{3x}-\frac{12}{3x}+\frac{42}{3x}=\frac{1}{4}\)

=> \(\frac{32}{3x}=\frac{1}{4}\)

=> \(3x=32.4:1=128\)

=> \(x=128:3=\frac{128}{3}\)

Vậy \(x\in\left\{\frac{128}{3}\right\}\)

\(k,\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}\)

ĐKXĐ :\(x\ne1;\)

=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{6}{3\left(x-1\right)}\)

=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{1}{x-1}\)

=> \(\frac{2.13}{2\left(x-1\right)}+\frac{5}{2\left(x-1\right)}-\frac{2.1}{2.\left(x-1\right)}\)

=> \(\frac{26+5-2}{2\left(x-1\right)}\)

=> \(\frac{29}{2\left(x-1\right)}\)

\(m,\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)

=> \(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)

=> \(\frac{19}{10}:x=\frac{3}{2}+\frac{1}{2}=2\)

=> \(x=\frac{19}{10}:2=\frac{19}{20}\)

Vậy \(x\in\left\{\frac{19}{20}\right\}\)

\(n,\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\left(2x-1\right)=\left(\frac{-3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)

=> \(\frac{233}{286}\left(2x-1\right)=-\frac{233}{572}\)

=> \(2x-1=-\frac{233}{572}:\frac{233}{286}=-\frac{1}{2}\)

=> \(2x=-\frac{1}{2}+1=\frac{1}{2}\)

=> \(x=\frac{1}{2}:2=\frac{1}{4}\)

Vậy \(x\in\left\{\frac{1}{4}\right\}\)

25 tháng 3 2018

Bài 1 : 

Ta có : 

\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(A=\frac{3}{5}+\frac{2}{5}\)

\(A=1\)

\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Đo đó : 

\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)

Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

25 tháng 3 2018

bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà 

câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2

(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai) 

5 tháng 9 2019

A = 5/7.(1+9/13) − 5/7.9/13

A= 5/7.(1+9/13 - 9/13)

A = 5/7.1

A = 5/7

B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41

B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5

B = 1 - 1 + 0.5

B = 0.5

C = −4/13.5/17 + (−12/13).4/17 + 4/13

C = 4/13.(-5/17) + (−12/13).4/17 + 4/13

C = 4/13.(-5/17 + 1) + (−12/13).4/17

C = 4/13.(−12/17) + (−12/13).4/17

C = (4.-12)/(13.17) + (−12/13).4/17

C = 4/17.(−12/13) + (−12/13).4/17

C = 4/17.(−12/13).2

C = 96/221

D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)

D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)

D = -1/62 - 2/9+ (−5/18)

D = -1/12 - ( 2/9+ (−5/18) )

D = -1/12 - ( 4/18+ (−5/18) )

D = -1/12 - (-1/18)

D = -1/12 + 1/18

D = -3/36 + 2/36

D = -1/36

E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11

E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11

E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11

E = ( - 1 + 1):5/11

E = 0:5/11

E = 0

Bài 1: Thực hiện các phép tính dau bằng cách hợp lía. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)Bài 2: Tìm x biếta. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)Bài 3: Thực hiện các phép tính sau bằng cách hợp lí...
Đọc tiếp

Bài 1: Thực hiện các phép tính dau bằng cách hợp lí

a. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)

b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)

Bài 2: Tìm x biết

a. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)

b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

Bài 3: Thực hiện các phép tính sau bằng cách hợp lí nhất

a. \(\left(-\frac{40}{51}\cdot0,32\cdot\frac{17}{20}\right):\frac{64}{75}\)

b. \(-\frac{10}{11}\cdot\frac{8}{9}+\frac{7}{18}\cdot\frac{10}{11}\)

c. \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}-8\)

d. \(-1\frac{5}{7}\cdot15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)

Bìa 4: Tính giá trị của các biểu thức sau

a. \(A=7x-2x-\frac{2}{3}y+\frac{7}{9}y\) với \(x=-\frac{1}{10};y=4,8\)

b. \(B=x+\frac{0,2-0,375+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{22}}\) với\(x=-\frac{1}{3}\)

0
22 tháng 8 2019

a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)

\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)

\(=\frac{2}{3}-\frac{99}{104}\)

\(=-\frac{89}{312}\)

b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)

\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)

\(=\frac{214}{13}-\frac{18}{7}\)

\(=\frac{1264}{91}\)

c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)

\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)

\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)

\(=2+3\frac{7}{11}\)

\(=5\frac{7}{11}\)

\(=\frac{62}{11}\)

d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)

\(=0\)

e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)

\(=-\frac{3}{2}\cdot\frac{5}{3}\)

\(=-\frac{5}{2}\)

f, Đặt \(A=1^2+2^2+3^2+...+100^2\)

\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)

\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)

\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)

Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101 

3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )

3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101 

3B = 100 . 101 . 102

B = \(\frac{100\cdot101\cdot102}{3}\)

B = 343400

Thay B vào A. Ta được :

\(A=343400-\left(1+2+3+...+100\right)\)

Thay C = 1 + 2 + 3 + ... + 100

Dãy số 1; 2; 3; ...; 100 có số số hạng là:

( 100 - 1 ) : 1 + 1 = 100 ( số hạng )

Tổng của dãy số đó là :

( 100 + 1 ) . 100 : 2 = 5050

=> C = 5050

Thay C vào A. Ta được :

\(A=343400-5050\)

\(A=338350\)

Vậy A = 338350