\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...\frac{1}{300}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

\(S=\frac{1}{3}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{300}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{6}+\frac{1}{12}+\cdot\cdot\cdot+\frac{1}{600}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2\times3}+\frac{1}{3\times4}+\cdot\cdot\cdot+\frac{1}{24\times25}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdot\cdot\cdot+\frac{1}{24}-\frac{1}{25}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{25}\)

\(\Rightarrow\frac{1}{2}S=\frac{23}{50}\)

\(\Rightarrow S=\frac{23}{50}:\frac{1}{2}\)

\(\Rightarrow S=\frac{23}{25}\)

31 tháng 7 2019

S = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{300}\)

  = \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{600}\right)\)

  = \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{24\times25}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{24}-\frac{1}{25}\right)\)

  = \(2\times\left(\frac{1}{2}-\frac{1}{25}\right)\)

\(=2\times\frac{23}{50}\)

\(=\frac{23}{25}\)

22 tháng 7 2018

Dùng máy tính đấy em ơi

19 tháng 7 2017

Đặt  \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{8}\right)\)

\(\Rightarrow A=2\cdot\frac{3}{8}=\frac{3}{4}\)

25 tháng 6 2017

Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)

\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)

\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)

\(\frac{1}{x}=\frac{1}{2}\)

=> x = 2

25 tháng 6 2017

a) \(\frac{x\div3-16}{2}+21=38\)

\(\frac{x\div3-16}{2}=38+21\)

\(\frac{x\div3-16}{2}=59\)

\(x\div3-16=59.2\)

\(x\div3-16=118\)

\(x\div3=118+16\)

\(x\div3=134\)

\(x=134.3\)

\(x=402\)

b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)

\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)

\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{2}\)

Vậy x = ....

18 tháng 5 2020

 Heo ơi

Heo

5/14 nhé

23 tháng 7 2017

\(D=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)

\(D=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}\)

\(D=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}\)

\(D=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(D=2\left(\frac{1}{4}-\frac{1}{10}\right)=2\cdot\frac{3}{20}=\frac{3}{10}\)

\(E=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(E=\frac{5}{28}+\frac{1}{14}+\frac{1}{26}+...+\frac{1}{140}\)

\(E=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(E=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(E=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(E=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)

6 tháng 4 2018

Bỏ đi  \(\frac{1}{36}\) ta  được

\(\frac{1}{3}\) +\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+\(\frac{1}{21}\)+\(\frac{1}{28}\)

=\(\frac{140+70+42+28+20+15}{420}\)

=\(\frac{315}{420}\)

=\(\frac{3}{4}\)

6 tháng 4 2018

làm ra luôn

19 tháng 7 2017

Đặt X=phép tính trên

Ta có X=X x 1/2 :1/2

X=(1/6+1/12+...+1/6480):1/2

X=(1/2x3+1/3x4+...+1/80x81):1/2

X=(1/2-1/3+1/3-1/4+...+1/80-1/81):1/2

X=(1/2-1/81):1/2

Đến đây bạn tự tính nhé!!!

19 tháng 7 2017

Đặt: A=...

\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{6480}\)

\(\frac{A}{2}=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+...+\frac{1}{80x81}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{80}-\frac{1}{81}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{81}=\frac{79}{162}\) => A=\(\frac{79}{81}\)