\(\frac{1}{12}-\frac{1}{20}-...-\frac{1}{380}=?\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

\(\frac{1}{12}-\frac{1}{20}-...-\frac{1}{380}\)

\(=\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{19.20}\)

\(=\left(\frac{1}{3}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{6}\right)-...-\left(\frac{1}{19}-\frac{1}{20}\right)\)

\(=\frac{1}{3}-\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}-...-\frac{1}{19}+\frac{1}{20}\)

\(=\frac{1}{3}-\frac{1}{4}-\frac{1}{4}+\frac{1}{20}\)

\(=-\frac{7}{60}\)

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}+\frac{1}{132}\)

= \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{10\times11}+\frac{1}{11\times12}\)

= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

= \(\frac{1}{1}-\frac{1}{12}\)

= \(\frac{11}{12}\)

2 tháng 6 2017

Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{132}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{11.12}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{11}-\frac{1}{12}\)

\(=1-\frac{1}{12}\)

\(=\frac{11}{12}\)

3 tháng 8 2016

Chỗ cuối mk nhầm, sửa lại nha :

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{100}\)

\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{10}+\frac{1}{100}\)

\(=\frac{50}{100}-\frac{10}{100}+\frac{1}{100}\)

\(=\frac{41}{100}\)

3 tháng 8 2016

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{100}\)

\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{10}+\frac{1}{100}\)

\(=\frac{50}{100}-\frac{10}{100}-\frac{1}{100}\)

\(=\frac{39}{100}\)

Đúng thì k nha bn !!!!

1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110 = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/9.10 + 1/10.11 = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/9 - 1/10 + 1/10 - 1/11 = 1/2 - 1/11 = 9/22

14 tháng 7 2016

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)

=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

=\(\frac{1}{2}-\frac{1}{11}\)

=\(\frac{9}{22}\)

13 tháng 6 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)

28 tháng 10 2018

\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)

                                      \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

                                      \(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)

7 tháng 7 2019

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)

31 tháng 10 2015

1/2.3+1/3.4+1/4.5+...+1/380

=1/2.3+1/3.4+1/4.5+...+1/19.20

=1/2-1/3+1/3-1/4+1/4-1/5+...+1/19-1/20

=1/2-1/20

=9/20 

tick nha bn cám ơn

28 tháng 4 2019

\(\left(y-\frac{1}{2}\right):\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)

=> \(\left(y-\frac{1}{2}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)

=> \(\left(y-\frac{1}{2}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)

=> \(\left(y-\frac{1}{2}\right):\left(1-\frac{1}{10}\right)=\frac{1}{3}\)

=> \(\left(y-\frac{1}{2}\right):\frac{9}{10}=\frac{1}{3}\)

=> \(y-\frac{1}{2}=\frac{3}{10}\)

=> \(y=\frac{13}{10}\)

Study well ! >_<

6 tháng 8 2017

\(S=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{90}+\frac{1}{100}\)

\(S=\left(\frac{1}{6}+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{100}\right)+\left(\frac{1}{30}+\frac{1}{90}\right)\)

\(S=\left(\frac{2}{12}+\frac{1}{12}\right)+\left(\frac{5}{100}+\frac{1}{100}\right)+\left(\frac{3}{90}+\frac{1}{90}\right)\)

\(S=\frac{3}{12}+\frac{6}{100}+\frac{4}{90}\)

\(S=\frac{1}{4}+\frac{3}{50}+\frac{2}{45}\)

\(S=\frac{319}{900}\)

6 tháng 8 2017

S=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.15}+..\)

\(S=SAI\)

HÌNH NHƯ SAI RỒI 

HÌNH NHỨIA