\(B=\sin\alpha-\sin\alpha\cdot\cos^2\alpha\)

2. Cho 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

A B C M H

Ta có : \(\left(sin\alpha+cos\alpha\right)^2=sin^2\alpha+cos^2\alpha+2sin\alpha.cos\alpha\) (1)

Lại có : \(sin^2\alpha=\frac{AB^2}{BC^2}\) ; \(cos^2\alpha=\frac{AC^2}{BC^2}\) \(\Rightarrow sin^2\alpha+cos^2\alpha=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\) (2)

Kẻ đường cao AH (H thuộc BC)

Ta sẽ chứng minh \(sin\beta=2sin\alpha.cos\alpha\)

Xét tam giác vuông HMA có : \(sin\beta=\frac{AH}{AM}\) 

Lại có \(AH=\frac{AB.AC}{BC}\) ; \(AM=\frac{BC}{2}\) \(\Rightarrow sin\beta=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2sin\alpha.cos\alpha\)(3)

Từ (1) , (2) , (3) ta có điều phải chứng minh.

 

18 tháng 7 2018

a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa

b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)

c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé